Suppr超能文献

追踪中的随机预测:适应性模型理论的实验测试

Stochastic prediction in pursuit tracking: an experimental test of adaptive model theory.

作者信息

Neilson P D, O'Dwyer N J, Neilson M D

机构信息

Spastic Centre Research Unit, School of Medicine, University of New South Wales, Sydney, Australia.

出版信息

Biol Cybern. 1988;58(2):113-22. doi: 10.1007/BF00364157.

Abstract

In this paper we test the proposition that in pursuit tracking, subjects compute stochastic (statistical) models of the temporal variations in position of the target and use these models to forecast target position for at least a response time interval into the future. A computer simulation of a human operator employing stochastic model prediction of target position is used to generate a synthetic pursuit tracking response signal. Actual pursuit tracking response signals are measured from 10 normal subjects using the same stimulus signal. Cross correlation and spectral analysis are employed to compute gain and phase frequency response characteristics for both synthetic and actual tracking data. The similarity of the gain and phase curves for synthetic and actual data provides compelling evidence in support of the proposition.

摘要

在本文中,我们检验了这样一个命题:在追踪任务中,受试者会计算目标位置随时间变化的随机(统计)模型,并使用这些模型预测目标位置,至少在未来一个反应时间间隔内进行预测。利用对目标位置进行随机模型预测的人类操作员计算机模拟来生成一个合成追踪反应信号。使用相同的刺激信号从10名正常受试者身上测量实际的追踪反应信号。采用互相关和频谱分析来计算合成和实际追踪数据的增益和相位频率响应特性。合成数据和实际数据的增益和相位曲线的相似性为该命题提供了有力的证据支持。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验