Loram Ian D, Lakie Martin, Gawthrop Peter J
Institute for Biomedical Research into Human Movement and Health, Manchester Metropolitan University, John Dalton Building, Oxford Road, Manchester M1 5GD, UK.
J Physiol. 2009 Mar 15;587(Pt 6):1343-65. doi: 10.1113/jphysiol.2008.166173. Epub 2009 Jan 26.
Human balance is commonly described using linear-time-invariant (LTI) models. The feedback time delay determines the position of balance in the motor-control hierarchy. The extent of LTI control illuminates the automaticity of the control process. Using non-parametric analysis, we measured the feedback delay, extent of LTI control and visuo-motor transfer function in six randomly disturbed, visuo-manual compensatory tracking tasks analogous to standing with small mechanical perturbations and purely visual information. The delay depended primarily on load order (2nd: 220+/-30 ms, 1st: 124+/-20 ms), and secondarily on visual magnification (extent 2nd: 34 ms, 1st: 8 ms) and was unaffected by load stability. LTI control explained 1st order and stable loads relatively well. For unstable (85% passive stabilisation) 2nd order loads, LTI control accounted for 40% of manual output at 0.1 Hz decreasing below 10% as frequency increased through the important 1-3 Hz region where manual power and visuo-motor gain are high. Visual control of unstable 2nd order loads incurs substantial feedback delays and the control process will not be LTI. These features do not result from exclusive use of visual inputs because we found much shorter delays and a greater degree of LTI control when subjects visually controlled a 1st order load. Rather, these results suggest that delay and variability are inevitable when more flexible, intentional mechanisms are required to control 2nd order unstable loads. The high variability of quiet standing, and movement generally, may be indicative of flexible, variable delay, intentional mechanisms rather than the automatic LTI responses usually reported in response to large perturbations.
人体平衡通常使用线性时不变(LTI)模型来描述。反馈时间延迟决定了平衡在运动控制层次结构中的位置。LTI控制的程度阐明了控制过程的自动性。我们使用非参数分析,在六个随机干扰的视觉手动补偿跟踪任务中测量了反馈延迟、LTI控制程度和视觉运动传递函数,这些任务类似于在受到小机械扰动和仅提供视觉信息的情况下站立。延迟主要取决于负载顺序(二阶:220±30毫秒,一阶:124±20毫秒),其次取决于视觉放大率(二阶范围:34毫秒,一阶:8毫秒),且不受负载稳定性影响。LTI控制对一阶和稳定负载的解释相对较好。对于不稳定的(85%被动稳定)二阶负载,LTI控制在0.1赫兹时占手动输出的40%,随着频率在重要的1 - 3赫兹区域增加(此时手动功率和视觉运动增益较高),该比例降至10%以下。对不稳定二阶负载的视觉控制会产生显著的反馈延迟,且控制过程将不是LTI。这些特征并非仅由视觉输入的使用导致,因为我们发现当受试者视觉控制一阶负载时,延迟要短得多,且LTI控制程度更高。相反,这些结果表明,当需要更灵活、有意的机制来控制二阶不稳定负载时,延迟和变异性是不可避免的。安静站立以及一般运动的高变异性,可能表明存在灵活、可变延迟的有意机制,而非通常报道的对大扰动的自动LTI反应。