Suppr超能文献

追踪手动跟踪的感知控制模型显示出个体特异性和参数一致性。

Perceptual control models of pursuit manual tracking demonstrate individual specificity and parameter consistency.

作者信息

Parker Maximilian G, Tyson Sarah F, Weightman Andrew P, Abbott Bruce, Emsley Richard, Mansell Warren

机构信息

Division of Psychology and Mental Health, School of Psychological Sciences, University of Manchester, 2nd Floor Zochonis Building, Brunswick Street, Manchester, M13 9PL, UK.

Division of Nursing, Midwifery and Social Work, University of Manchester, Manchester, UK.

出版信息

Atten Percept Psychophys. 2017 Nov;79(8):2523-2537. doi: 10.3758/s13414-017-1398-2.

Abstract

Computational models that simulate individuals' movements in pursuit-tracking tasks have been used to elucidate mechanisms of human motor control. Whilst there is evidence that individuals demonstrate idiosyncratic control-tracking strategies, it remains unclear whether models can be sensitive to these idiosyncrasies. Perceptual control theory (PCT) provides a unique model architecture with an internally set reference value parameter, and can be optimized to fit an individual's tracking behavior. The current study investigated whether PCT models could show temporal stability and individual specificity over time. Twenty adults completed three blocks of 15 1-min, pursuit-tracking trials. Two blocks (training and post-training) were completed in one session and the third was completed after 1 week (follow-up). The target moved in a one-dimensional, pseudorandom pattern. PCT models were optimized to the training data using a least-mean-squares algorithm, and validated with data from post-training and follow-up. We found significant inter-individual variability (partial η: .464-.697) and intra-individual consistency (Cronbach's α: .880-.976) in parameter estimates. Polynomial regression revealed that all model parameters, including the reference value parameter, contribute to simulation accuracy. Participants' tracking performances were significantly more accurately simulated by models developed from their own tracking data than by models developed from other participants' data. We conclude that PCT models can be optimized to simulate the performance of an individual and that the test-retest reliability of individual models is a necessary criterion for evaluating computational models of human performance.

摘要

用于模拟个体在追踪任务中运动的计算模型已被用于阐明人类运动控制的机制。虽然有证据表明个体表现出独特的控制追踪策略,但模型是否能对这些特质敏感仍不清楚。感知控制理论(PCT)提供了一种独特的模型架构,具有内部设定的参考值参数,并且可以进行优化以拟合个体的追踪行为。当前的研究调查了PCT模型是否能随时间表现出时间稳定性和个体特异性。20名成年人完成了三个包含15次1分钟追踪试验的组块。其中两个组块(训练和训练后)在一次实验中完成,第三个组块在1周后(随访)完成。目标以一维伪随机模式移动。使用最小均方算法将PCT模型优化至训练数据,并使用训练后和随访的数据进行验证。我们发现参数估计中存在显著的个体间变异性(偏η:.464-.697)和个体内一致性(克朗巴哈α系数:.880-.976)。多项式回归显示,所有模型参数,包括参考值参数,都对模拟准确性有贡献。与根据其他参与者数据开发的模型相比,根据参与者自身追踪数据开发的模型能更准确地模拟参与者的追踪表现。我们得出结论,PCT模型可以进行优化以模拟个体的表现,并且个体模型的重测信度是评估人类表现计算模型的必要标准。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b432/5662710/32fdbeb25c7f/13414_2017_1398_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验