Lv Xiu-Liang, Feng Liang, Xie Lin-Hua, He Tao, Wu Wei, Wang Kun-Yu, Si Guangrui, Wang Bin, Li Jian-Rong, Zhou Hong-Cai
Beijing Key Laboratory for Green Catalysis and Separation and Department of Environmental Chemical Engineering, Beijing University of Technology, Beijing 100124, People's Republic of China.
Department of Chemistry, Texas A&M University, College Station, Texas 77843-3255, United States.
J Am Chem Soc. 2021 Feb 24;143(7):2784-2791. doi: 10.1021/jacs.0c11546. Epub 2021 Jan 25.
The exploration of metal-organic frameworks (MOFs) through the rational design of building units with specific sizes, geometries, and symmetries is essential for enriching the structural diversity of porous solids for applications including storage, separation, and conversion. However, it is still a challenge to directly synthesize rare-earth (RE) MOFs with less connected clusters as a thermodynamically favored product. Herein, we report a systematic investigation on the influence of size, rigidity, and symmetry of linkers over the formation of RE-tetracarboxylate MOFs and uncover the critical role of linker desymmetrization in constructing RE-MOFs with eight-connected hexanuclear clusters. Our results on nine new RE-MOFs, PCN-50 ( = 1-9), indicate that utilization of trapezoidal or tetrahedral linkers provides accesses to traditionally unattainable RE-tetracarboxylate MOFs with 8-c hexanuclear nodes, while the introduction of square or rectangular linkers during the assembly of RE-MOFs based on polynuclear clusters typically leads to the MOFs constructed from 12-c nodes with underlying topology. By rational linker design, MOFs with two unprecedented (4, 8)-c nets, and , can also be obtained. This work highlights linker desymmetrization as a powerful strategy to enhance MOFs' structural complexity and access MOF materials with nondefault topologies that can be potentially used for separation and catalysis.
通过合理设计具有特定尺寸、几何形状和对称性的建筑单元来探索金属有机框架(MOF),对于丰富多孔固体的结构多样性以用于包括存储、分离和转化等应用至关重要。然而,直接合成具有较少连接簇的稀土(RE)MOF作为热力学上有利的产物仍然是一个挑战。在此,我们报告了关于连接体的尺寸、刚性和对称性对RE-四羧酸根MOF形成的影响的系统研究,并揭示了连接体去对称化在构建具有八连接六核簇的RE-MOF中的关键作用。我们对九种新型RE-MOF,即PCN-50( = 1-9)的研究结果表明,使用梯形或四面体连接体能够获得传统上难以实现的具有8-c六核节点的RE-四羧酸根MOF,而在基于多核簇的RE-MOF组装过程中引入方形或矩形连接体通常会导致由具有底层拓扑结构的12-c节点构建的MOF。通过合理的连接体设计,还可以获得具有两种前所未有的(4, 8)-c网络,即 和 的MOF。这项工作强调了连接体去对称化是增强MOF结构复杂性并获得具有非默认拓扑结构的MOF材料的有力策略,这些材料可能用于分离和催化。