Fan Yuesen, Long Chengbin, Cai Yuyi, Hu Yingkun, Peng Lihua
Chongqing Medical University, Chongqing, China.
Department of Orthopedics, Bishan Hospital of Chongqing Medical University, Chongqing, China.
Front Bioeng Biotechnol. 2025 Aug 29;13:1645657. doi: 10.3389/fbioe.2025.1645657. eCollection 2025.
Bone defects resulting from trauma, tumors, infections, and aging present significant clinical challenges, with conventional grafts hindered by limitations in biocompatibility, mechanical strength, and integration. Metal-organic frameworks (MOFs), as advanced nanomaterials with tunable porosity, high surface area, and stimuli-responsive properties, hold immense potential for bone regeneration. This review provides a comprehensive overview of the classification, synthesis methods, osteogenic mechanisms, and applications of functionalized MOFs and their derivatives in bone repair. MOFs are classified based on structural topology, chemical composition, and functional applications. Synthesis techniques, including solvothermal, ultrasonic, and electrochemical approaches, are evaluated for customizing physical properties such as pore architecture and stability. Osteogenic mechanisms encompass enhancing implant physical characteristics to promote cell adhesion, sustained release of metal ions to activate signaling pathways, controlled drug delivery for targeted therapy, and anti-inflammatory/antioxidant effects through reactive oxygen species scavenging. Applications address various bone pathologies, demonstrating improved angiogenesis, osteointegration, and antibacterial performance in preclinical studies. Key challenges, including cytotoxicity, long-term biosafety, and scalability, are discussed, alongside strategies like surface modification and hybrid composites to overcome these barriers. Future perspectives focus on developing smart MOF-based scaffolds for personalized regenerative medicine, underscoring their transformative potential in orthopedic therapies.
由创伤、肿瘤、感染和衰老导致的骨缺损带来了重大的临床挑战,传统移植物受到生物相容性、机械强度和整合方面的限制。金属有机框架(MOF)作为具有可调孔隙率、高比表面积和刺激响应特性的先进纳米材料,在骨再生方面具有巨大潜力。本文综述了功能化MOF及其衍生物在骨修复中的分类、合成方法、成骨机制和应用。MOF根据结构拓扑、化学成分和功能应用进行分类。对包括溶剂热法、超声法和电化学法在内的合成技术进行了评估,以定制诸如孔结构和稳定性等物理性质。成骨机制包括增强植入物物理特性以促进细胞粘附、金属离子的持续释放以激活信号通路、用于靶向治疗的可控药物递送以及通过清除活性氧产生抗炎/抗氧化作用。应用涉及各种骨病理情况,在临床前研究中显示出改善的血管生成、骨整合和抗菌性能。讨论了包括细胞毒性、长期生物安全性和可扩展性在内的关键挑战,以及诸如表面改性和混合复合材料等克服这些障碍的策略。未来展望集中在开发基于MOF的智能支架用于个性化再生医学,强调了它们在骨科治疗中的变革潜力。