NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, Jiangsu, 214063, China.
NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, Jiangsu, 214063, China; Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, PR China.
Biosens Bioelectron. 2021 Apr 15;178:113015. doi: 10.1016/j.bios.2021.113015. Epub 2021 Jan 20.
Dependable, specific and rapid diagnostic methods for severe acute respiratory syndrome β-coronavirus (SARS-CoV-2) detection are needed to promote public health interventions for coronavirus disease 2019 (COVID-19). Herein, we have established an entropy-driven amplified electrochemiluminescence (ECL) strategy to detect the RNA-dependent RNA polymerase (RdRp) gene of SARS-CoV-2 known as RdRp-COVID which as the target for SARS-CoV-2 plays an essential role in the diagnosis of COVID-19. For the construction of the sensors, DNA tetrahedron (DT) is modified on the surface of the electrode to furnish robust and programmable scaffolds materials, upon which target DNA-participated entropy-driven amplified reaction is efficiently conducted to link the Ru (bpy) modified S3 to the linear ssDNA at the vertex of the tetrahedron and eventually present an "ECL on" state. The rigid tetrahedral structure of the DT probe enhances the ECL intensity and avoids the cross-reactivity between single-stranded DNA, thus increasing the sensitivity of the assays. The enzyme-free entropy-driven reaction prevents the use of expensive enzyme reagents and facilitates the realization of large-scale screening of SARS-CoV-2 patients. Our DT-based ECL sensor has demonstrated significant specificity and high sensitivity for SARS-CoV-2 with a limit of detection (LOD) down to 2.67 fM. Additionally, our operational method has achieved the detection of RdRp-COVID in human serum samples, which supplies a reliable and feasible sensing platform for the clinical bioanalysis.
需要可靠、特异且快速的方法来检测严重急性呼吸综合征 β 冠状病毒(SARS-CoV-2),以促进针对 2019 冠状病毒病(COVID-19)的公共卫生干预措施。在此,我们建立了一种基于熵驱动的扩增电化学发光(ECL)策略,用于检测 SARS-CoV-2 的 RNA 依赖性 RNA 聚合酶(RdRp)基因,称为 RdRp-COVID,作为 SARS-CoV-2 的靶标,在 COVID-19 的诊断中发挥着重要作用。为了构建传感器,在电极表面修饰 DNA 四面体(DT),提供坚固且可编程的支架材料,在此基础上,目标 DNA 参与的熵驱动放大反应得以高效进行,将 Ru(bpy)修饰的 S3 与四面体顶点处的线性 ssDNA 连接,并最终呈现出“ECL 开启”状态。DT 探针的刚性四面体结构增强了 ECL 强度,并避免了单链 DNA 之间的交叉反应,从而提高了分析的灵敏度。无酶熵驱动反应避免了昂贵的酶试剂的使用,有利于 SARS-CoV-2 的大规模筛选。我们基于 DT 的 ECL 传感器对 SARS-CoV-2 具有显著的特异性和高灵敏度,检测限(LOD)低至 2.67 fM。此外,我们的操作方法已经实现了人血清样本中 RdRp-COVID 的检测,为临床生物分析提供了可靠且可行的传感平台。
Molecules. 2024-3-29
J Pharm Anal. 2023-11
ECS Sens Plus. 2023-9-1
Anal Chem. 2020-11-20
ACS Nano. 2020-10-9
Anal Chem. 2020-7-9
Biosens Bioelectron. 2020-6-3
ACS Infect Dis. 2020-7-10