Suppr超能文献

通过利用基于结构的药物设计策略的人工智能和机器学习对严重急性呼吸综合征冠状病毒2(SARS-CoV-2)的RNA依赖性RNA聚合酶(RdRp)进行的系统综述。

A systematic review of RdRp of SARS-CoV-2 through artificial intelligence and machine learning utilizing structure-based drug design strategy.

作者信息

Imtiaz Fariha, Pasha Mustafa Kamal

机构信息

Punjab University College of Pharmacy, University of the Punjab, Lahore, Pakistan.

Business R&D and Operations, Myst Enterprise, New Zealand.

出版信息

Turk J Chem. 2021 Dec 27;46(3):583-594. doi: 10.55730/1300-0527.3355. eCollection 2022.

Abstract

Since the coronavirus disease has been declared a global pandemic, it had posed a challenge among researchers and raised common awareness and collaborative efforts towards finding the solution. Caused by severe acute respiratory coronavirus syndrome-2 (SARS-CoV-2), coronavirus drug design strategy needs to be optimized. It is understandable that cognizance of the pathobiology of COVID-19 can help scientists in the development and discovery of therapeutically effective antiviral drugs by elucidating the unknown viral pathways and structures. Considering the role of artificial intelligence and machine learning with its advancements in the field of science, it is rational to use these methods which can aid in the discovery of new potent candidates in silico. Our review utilizes similar methodologies and focuses on RNA-dependent RNA polymerase (RdRp), based on its importance as an essential element for virus replication and also a promising target for COVID-19 therapeutics. Artificial neural network technique was used to shortlist articles with the support of PRISMA, from different research platforms including Scopus, PubMed, PubChem, and Web of Science, through a combination of keywords. "English language", from the year "2000" and "published articles in journals" were selected to carry out this research. We summarized that structural details of the RdRp reviewed in this analysis will have the potential to be taken into consideration when developing therapeutic solutions and if further multidisciplinary efforts are taken in this domain then potential clinical candidates for RdRp of SARS-CoV-2 could be successfully delivered for experimental validations.

摘要

自冠状病毒病被宣布为全球大流行以来,它给研究人员带来了挑战,并提高了人们对寻找解决方案的普遍认识和合作努力。由严重急性呼吸综合征冠状病毒2(SARS-CoV-2)引起的冠状病毒,其药物设计策略需要优化。可以理解的是,了解COVID-19的病理生物学有助于科学家通过阐明未知的病毒途径和结构来开发和发现具有治疗效果的抗病毒药物。考虑到人工智能和机器学习在科学领域的进展及其作用,使用这些方法有助于在计算机上发现新的有效候选药物是合理的。我们的综述采用了类似的方法,并基于RNA依赖性RNA聚合酶(RdRp)作为病毒复制的关键要素以及COVID-19治疗的有前景靶点的重要性,将重点放在该酶上。在PRISMA的支持下,利用人工神经网络技术,通过关键词组合,从包括Scopus、PubMed、PubChem和Web of Science在内的不同研究平台筛选文章。选择“英语语言”、“2000年以来”以及“期刊发表文章”来开展这项研究。我们总结认为,在开发治疗方案时,本分析中所综述的RdRp的结构细节有可能被考虑在内,如果在该领域进一步开展多学科努力,那么SARS-CoV-2的RdRp潜在临床候选药物可能会成功交付用于实验验证。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0571/10503974/3ca857b12d25/turkjchem-46-3-583f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验