Suppr超能文献

电化学生物传感器策略结合 DNA 熵驱动技术激活 CRISPR-Cas13a 活性和三链核酸以检测 SARS-CoV-2 RdRp 基因。

Electrochemical biosensor strategy combining DNA entropy-driven technology to activate CRISPR-Cas13a activity and triple-stranded nucleic acids to detect SARS-CoV-2 RdRp gene.

机构信息

The Affiliated Hospital of Youjiang Medical University for Nationalities, Guangxi, Baise, 533000, China.

West Guangxi Key Laboratory for Prevention and Treatment of High-Incidence Diseases, Youjiang Medical University for Nationalities, Guangxi, Baise, 533000, China.

出版信息

Mikrochim Acta. 2023 Jun 23;190(7):272. doi: 10.1007/s00604-023-05848-2.

Abstract

By merging DNA entropy-driven technology with triple-stranded nucleic acids in an electrochemical biosensor to detect the SARS-CoV-2 RdRp gene, we tackled the challenges of false negatives and the high cost of SARS-CoV-2 detection. The approach generates a CRISPR-Cas 13a-activated RNA activator, which then stimulates CRISPR-Cas 13a activity using an entropy-driven mechanism. The activated CRISPR-Cas 13a can cleave Hoogsteen DNA due to the insertion of two uracil (-U-U-) in Hoogsteen DNA. The DNA tetrahedra changed on the electrode surface and can therefore not construct a three-stranded structure after cleaving Hoogsteen DNA. Significantly, this DNA tetrahedron/Hoogsteen DNA-based biosensor can regenerate at pH = 10.0, which keeps Hoogsteen DNA away from the electrode surface, allowing the biosensor to function at pH = 7.0. We could use this technique to detect the SARS-CoV-2 RdRp gene with a detection limit of 89.86 aM. Furthermore, the detection method is very stable and repeatable. This technique offers the prospect of detecting SARS-CoV-2 at a reasonable cost. This work has potential applications in the dynamic assessment of the diagnostic and therapeutic efficacy of SARS-CoV-2 infection and in the screening of environmental samples.

摘要

我们将 DNA 熵驱动技术与三链核酸在电化学生物传感器中融合,以检测 SARS-CoV-2 RdRp 基因,从而解决了 SARS-CoV-2 检测的假阴性和高成本问题。该方法生成了一种 CRISPR-Cas13a 激活的 RNA 激活剂,然后利用熵驱动机制刺激 CRISPR-Cas13a 活性。激活的 CRISPR-Cas13a 可以由于 Hoogsteen DNA 中插入两个尿嘧啶 (-U-U-) 而切割 Hoogsteen DNA。电极表面上的 DNA 四面体发生变化,因此在切割 Hoogsteen DNA 后不能构建三链结构。重要的是,这种基于 DNA 四面体/Hoogsteen DNA 的生物传感器可以在 pH = 10.0 下再生,使 Hoogsteen DNA 远离电极表面,从而使生物传感器在 pH = 7.0 下工作。我们可以使用该技术以 89.86 aM 的检测限检测 SARS-CoV-2 RdRp 基因。此外,检测方法非常稳定且可重复。该技术有望以合理的成本检测 SARS-CoV-2。这项工作在 SARS-CoV-2 感染的诊断和治疗效果的动态评估以及环境样本的筛选方面具有应用前景。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验