Smart Materials Lab (SML), Division of Science and Mathematics, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates.
Division of Engineering, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates.
Proc Natl Acad Sci U S A. 2021 Feb 2;118(5). doi: 10.1073/pnas.2020604118.
Dynamic molecular crystals have recently received ample attention as an emerging class of energy-transducing materials, yet have fallen short of developing into fully realized actuators. Through the - surface isomerization of three crystalline azobenzene materials, here, we set out to extensively characterize the light-to-work energy conversion of photoinduced bending in molecular crystals. We distinguish the azobenzene single crystals from commonly used actuators through quantitative performance evaluation and specific performance indices. Bending molecular crystals have an operating range comparable to that of microactuators such as microelectromechanical systems and a work-generating capacity and dynamic performance that qualifies them to substitute micromotor drivers in mechanical positioning and microgripping tasks. Finite element modeling, applied to determine the surface photoisomerization parameters, allowed for predicting and optimizing the mechanical response of these materials. Utilizing mechanical characterization and numerical simulation tools proves essential in accelerating the introduction of dynamic molecular crystals into soft microrobotics applications.
动态分子晶体作为一类新兴的能量转换材料,近年来受到了广泛关注,但尚未完全发展成为实用的致动器。通过三种晶态偶氮苯材料的 - 表面异构化,我们广泛研究了光诱导弯曲的光 - 功能量转换在分子晶体中的作用。我们通过定量性能评估和特定性能指标,将偶氮苯单晶与常用致动器区分开来。弯曲分子晶体的工作范围可与微机电系统等微致动器相媲美,且具有产生功的能力和动态性能,使其有潜力替代微电机驱动器,用于机械定位和微夹持任务。有限元建模应用于确定表面光异构化参数,允许预测和优化这些材料的机械响应。机械特性分析和数值模拟工具的使用对于加速动态分子晶体在软微机器人应用中的引入至关重要。