Suppr超能文献

通过重复增强现实技术估计尾部概率。

Estimation of Tail Probabilities by Repeated Augmented Reality.

作者信息

Kedem Benjamin, Pyne Saumyadipta

机构信息

Department of Mathematics, Institute for Systems Research, University of Maryland, College Park, MD USA.

Public Health Dynamics Laboratory, Department of Biostatistics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA USA.

出版信息

J Stat Theory Pract. 2021;15(2):25. doi: 10.1007/s42519-020-00152-1. Epub 2021 Jan 20.

Abstract

Synthetic data, when properly used, can enhance patterns in real data and thus provide insights into different problems. Here, the estimation of tail probabilities of rare events from a moderately large number of observations is considered. The problem is approached by a large number of augmentations or fusions of the real data with computer-generated synthetic samples. The tail probability of interest is approximated by subsequences created by a novel iterative process. The estimates are found to be quite precise.

摘要

合成数据若使用得当,可增强真实数据中的模式,从而为不同问题提供见解。在此,考虑从适度大量的观测值估计罕见事件的尾部概率。该问题通过对真实数据与计算机生成的合成样本进行大量扩充或融合来解决。感兴趣的尾部概率由一个新颖的迭代过程创建的子序列近似。结果发现这些估计相当精确。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/56ff/7816841/702b8cb7297a/42519_2020_152_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验