Suppr超能文献

利用 3D 点云深度学习技术估算正颌手术规划中的参考骨性形态模型。

Estimating Reference Bony Shape Models for Orthognathic Surgical Planning Using 3D Point-Cloud Deep Learning.

出版信息

IEEE J Biomed Health Inform. 2021 Aug;25(8):2958-2966. doi: 10.1109/JBHI.2021.3054494. Epub 2021 Aug 5.

Abstract

Orthognathic surgical outcomes rely heavily on the quality of surgical planning. Automatic estimation of a reference facial bone shape significantly reduces experience-dependent variability and improves planning accuracy and efficiency. We propose an end-to-end deep learning framework to estimate patient-specific reference bony shape models for patients with orthognathic deformities. Specifically, we apply a point-cloud network to learn a vertex-wise deformation field from a patient's deformed bony shape, represented as a point cloud. The estimated deformation field is then used to correct the deformed bony shape to output a patient-specific reference bony surface model. To train our network effectively, we introduce a simulation strategy to synthesize deformed bones from any given normal bone, producing a relatively large and diverse dataset of shapes for training. Our method was evaluated using both synthetic and real patient data. Experimental results show that our framework estimates realistic reference bony shape models for patients with varying deformities. The performance of our method is consistently better than an existing method and several deep point-cloud networks. Our end-to-end estimation framework based on geometric deep learning shows great potential for improving clinical workflows.

摘要

正颌手术的结果在很大程度上依赖于手术规划的质量。自动估计参考面颅骨形状可显著降低经验依赖性变异性,提高规划的准确性和效率。我们提出了一种端到端的深度学习框架,用于估计正颌畸形患者的特定于患者的参考骨性形状模型。具体来说,我们应用点云网络从患者变形的骨性形状(表示为点云)中学习顶点变形场。然后,使用估计的变形场来校正变形的骨性形状,以输出特定于患者的参考骨性表面模型。为了有效地训练我们的网络,我们引入了一种从任何给定的正常骨骼合成变形骨骼的模拟策略,从而生成了一个相对较大且多样化的形状训练数据集。我们的方法使用合成和真实患者数据进行了评估。实验结果表明,我们的框架可以为具有不同畸形的患者估计出逼真的参考骨性形状模型。我们的方法的性能始终优于现有的方法和几种深度点云网络。我们基于几何深度学习的端到端估计框架在改善临床工作流程方面显示出巨大的潜力。

相似文献

5
Patient-specific reference model estimation for orthognathic surgical planning.基于患者特定参考模型的正颌手术规划估计。
Int J Comput Assist Radiol Surg. 2024 Jul;19(7):1439-1447. doi: 10.1007/s11548-024-03123-0. Epub 2024 Jun 13.

引用本文的文献

4
6
Patient-specific reference model estimation for orthognathic surgical planning.基于患者特定参考模型的正颌手术规划估计。
Int J Comput Assist Radiol Surg. 2024 Jul;19(7):1439-1447. doi: 10.1007/s11548-024-03123-0. Epub 2024 Jun 13.
10
Correspondence attention for facial appearance simulation.对应注意用于面部外观模拟。
Med Image Anal. 2024 Apr;93:103094. doi: 10.1016/j.media.2024.103094. Epub 2024 Jan 26.

本文引用的文献

1
Deep Learning for 3D Point Clouds: A Survey.用于三维点云的深度学习:综述
IEEE Trans Pattern Anal Mach Intell. 2021 Dec;43(12):4338-4364. doi: 10.1109/TPAMI.2020.3005434. Epub 2021 Nov 3.
2
A Comprehensive Survey on Graph Neural Networks.图神经网络综述。
IEEE Trans Neural Netw Learn Syst. 2021 Jan;32(1):4-24. doi: 10.1109/TNNLS.2020.2978386. Epub 2021 Jan 4.
7
Three-dimensional computer-aided surgical simulation for maxillofacial surgery.用于颌面外科手术的三维计算机辅助手术模拟
Atlas Oral Maxillofac Surg Clin North Am. 2005 Mar;13(1):25-39. doi: 10.1016/j.cxom.2004.10.004.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验