Suppr超能文献

使用“我们所有人”研究计划的数据进行青光眼预测分析。

Predictive Analytics for Glaucoma Using Data From the All of Us Research Program.

机构信息

From the Viterbi Family Department of Ophthalmology and Shiley Eye Institute, University of California San Diego, (S.L.B., B.R.S.), La Jolla, California; UCSD Health Department of Biomedical Informatics, University of California San Diego, (S.L.B., B.R.S., P.P., J.K., L.B., T.-T.K., L.O.-M.), La Jolla, California.

From the Viterbi Family Department of Ophthalmology and Shiley Eye Institute, University of California San Diego, (S.L.B., B.R.S.), La Jolla, California; UCSD Health Department of Biomedical Informatics, University of California San Diego, (S.L.B., B.R.S., P.P., J.K., L.B., T.-T.K., L.O.-M.), La Jolla, California.

出版信息

Am J Ophthalmol. 2021 Jul;227:74-86. doi: 10.1016/j.ajo.2021.01.008. Epub 2021 Jan 23.

Abstract

PURPOSE

To (1) use All of Us (AoU) data to validate a previously published single-center model predicting the need for surgery among individuals with glaucoma, (2) train new models using AoU data, and (3) share insights regarding this novel data source for ophthalmic research.

DESIGN

Development and evaluation of machine learning models.

METHODS

Electronic health record data were extracted from AoU for 1,231 adults diagnosed with primary open-angle glaucoma. The single-center model was applied to AoU data for external validation. AoU data were then used to train new models for predicting the need for glaucoma surgery using multivariable logistic regression, artificial neural networks, and random forests. Five-fold cross-validation was performed. Model performance was evaluated based on area under the receiver operating characteristic curve (AUC), accuracy, precision, and recall.

RESULTS

The mean (standard deviation) age of the AoU cohort was 69.1 (10.5) years, with 57.3% women and 33.5% black, significantly exceeding representation in the single-center cohort (P = .04 and P < .001, respectively). Of 1,231 participants, 286 (23.2%) needed glaucoma surgery. When applying the single-center model to AoU data, accuracy was 0.69 and AUC was only 0.49. Using AoU data to train new models resulted in superior performance: AUCs ranged from 0.80 (logistic regression) to 0.99 (random forests).

CONCLUSIONS

Models trained with national AoU data achieved superior performance compared with using single-center data. Although AoU does not currently include ophthalmic imaging, it offers several strengths over similar big-data sources such as claims data. AoU is a promising new data source for ophthalmic research.

摘要

目的

(1)利用 All of Us(AoU)数据验证先前发表的预测青光眼患者手术需求的单中心模型,(2)使用 AoU 数据训练新模型,(3)分享有关这种新型眼科研究数据源的见解。

设计

机器学习模型的开发和评估。

方法

从 AoU 中提取了 1231 名被诊断为原发性开角型青光眼的成年人的电子健康记录数据。将单中心模型应用于 AoU 数据进行外部验证。然后,使用 AoU 数据使用多变量逻辑回归、人工神经网络和随机森林来训练新的预测青光眼手术需求的模型。进行了五重交叉验证。基于接收者操作特征曲线下的面积(AUC)、准确性、精度和召回率来评估模型性能。

结果

AoU 队列的平均(标准差)年龄为 69.1(10.5)岁,女性占 57.3%,黑人占 33.5%,显著超过单中心队列的代表性(P 分别为 =.04 和 P <.001)。在 1231 名参与者中,有 286 名(23.2%)需要进行青光眼手术。当将单中心模型应用于 AoU 数据时,准确性为 0.69,AUC 仅为 0.49。使用 AoU 数据训练新模型可获得更好的性能:AUC 范围从 0.80(逻辑回归)到 0.99(随机森林)。

结论

使用全国 AoU 数据训练的模型与使用单中心数据相比表现更好。尽管 AoU 目前不包括眼科成像,但它提供了一些优于类似大数据源(如索赔数据)的优势。AoU 是眼科研究的一种很有前途的新数据源。

相似文献

1
Predictive Analytics for Glaucoma Using Data From the All of Us Research Program.
Am J Ophthalmol. 2021 Jul;227:74-86. doi: 10.1016/j.ajo.2021.01.008. Epub 2021 Jan 23.
3
Assessing Glaucoma Progression Using Machine Learning Trained on Longitudinal Visual Field and Clinical Data.
Ophthalmology. 2021 Jul;128(7):1016-1026. doi: 10.1016/j.ophtha.2020.12.020. Epub 2020 Dec 25.
4
Data model harmonization for the All Of Us Research Program: Transforming i2b2 data into the OMOP common data model.
PLoS One. 2019 Feb 19;14(2):e0212463. doi: 10.1371/journal.pone.0212463. eCollection 2019.
6
Machine Learning Approach for Intraocular Disease Prediction Based on Aqueous Humor Immune Mediator Profiles.
Ophthalmology. 2021 Aug;128(8):1197-1208. doi: 10.1016/j.ophtha.2021.01.019. Epub 2021 Jan 21.
8
Optical coherence tomography machine learning classifiers for glaucoma detection: a preliminary study.
Invest Ophthalmol Vis Sci. 2005 Nov;46(11):4147-52. doi: 10.1167/iovs.05-0366.

引用本文的文献

1
ENABLING A HEALTHIER FUTURE FOR ALL THROUGH PRECISION MEDICINE.
Trans Am Clin Climatol Assoc. 2025;135:60-73.
2
High-Density Lipoproteins Associated with Age-Related Macular Degeneration in the All of Us Research Program.
Ophthalmology. 2025 Jun;132(6):684-691. doi: 10.1016/j.ophtha.2024.12.039. Epub 2025 Jan 3.
3
Construction of diagnostic models with machine-learning algorithms for colorectal cancer based on clinical laboratory parameters.
J Gastrointest Oncol. 2024 Oct 31;15(5):2145-2156. doi: 10.21037/jgo-24-516. Epub 2024 Sep 12.
4
Big data to guide glaucoma treatment.
Taiwan J Ophthalmol. 2023 Jul 28;14(3):333-339. doi: 10.4103/tjo.TJO-D-23-00068. eCollection 2024 Jul-Sep.
5
Application of artificial intelligence in glaucoma care: An updated review.
Taiwan J Ophthalmol. 2024 Sep 13;14(3):340-351. doi: 10.4103/tjo.TJO-D-24-00044. eCollection 2024 Jul-Sep.
6
Big data and electronic health records for glaucoma research.
Taiwan J Ophthalmol. 2024 Sep 13;14(3):352-359. doi: 10.4103/tjo.TJO-D-24-00055. eCollection 2024 Jul-Sep.
7
The Impact of Race, Ethnicity, and Sex on Fairness in Artificial Intelligence for Glaucoma Prediction Models.
Ophthalmol Sci. 2024 Aug 14;5(1):100596. doi: 10.1016/j.xops.2024.100596. eCollection 2025 Jan-Feb.
8
Gap Analysis of Glaucoma Examination Concept Representations within Standard Systemized Nomenclature of Medicine - Clinical Terms.
Ophthalmol Glaucoma. 2025 Jan-Feb;8(1):83-91. doi: 10.1016/j.ogla.2024.08.001. Epub 2024 Aug 13.
10
Prediction Models for Glaucoma in a Multicenter Electronic Health Records Consortium: The Sight Outcomes Research Collaborative.
Ophthalmol Sci. 2023 Dec 6;4(3):100445. doi: 10.1016/j.xops.2023.100445. eCollection 2024 May-Jun.

本文引用的文献

1
The Research Program: Data quality, utility, and diversity.
Patterns (N Y). 2022 Aug 12;3(8):100570. doi: 10.1016/j.patter.2022.100570.
2
Clinical Implementation of Predictive Models Embedded within Electronic Health Record Systems: A Systematic Review.
Informatics (MDPI). 2020 Sep;7(3). doi: 10.3390/informatics7030025. Epub 2020 Jul 25.
3
Multicenter Analysis of Electronic Health Record Use among Ophthalmologists.
Ophthalmology. 2021 Jan;128(1):165-166. doi: 10.1016/j.ophtha.2020.06.007. Epub 2020 Jun 7.
4
The "All of Us" Research Program.
N Engl J Med. 2019 Aug 15;381(7):668-676. doi: 10.1056/NEJMsr1809937.
6
Artificial Intelligence and the Implementation Challenge.
J Med Internet Res. 2019 Jul 10;21(7):e13659. doi: 10.2196/13659.
7
Efficient learning from big data for cancer risk modeling: A case study with melanoma.
Comput Biol Med. 2019 Jul;110:29-39. doi: 10.1016/j.compbiomed.2019.04.039. Epub 2019 Apr 30.
8
The practical implementation of artificial intelligence technologies in medicine.
Nat Med. 2019 Jan;25(1):30-36. doi: 10.1038/s41591-018-0307-0. Epub 2019 Jan 7.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验