Suppr超能文献

种族、族裔和性别对青光眼预测模型人工智能公平性的影响

The Impact of Race, Ethnicity, and Sex on Fairness in Artificial Intelligence for Glaucoma Prediction Models.

作者信息

Ravindranath Rohith, Stein Joshua D, Hernandez-Boussard Tina, Fisher A Caroline, Wang Sophia Y

机构信息

Department of Ophthalmology, Byers Eye Institute, Stanford University, Palo Alto, California.

Department of Ophthalmology & Visual Sciences, University of Michigan Kellogg Eye Center, Ann Arbor, Michigan.

出版信息

Ophthalmol Sci. 2024 Aug 14;5(1):100596. doi: 10.1016/j.xops.2024.100596. eCollection 2025 Jan-Feb.

Abstract

OBJECTIVE

Despite advances in artificial intelligence (AI) in glaucoma prediction, most works lack multicenter focus and do not consider fairness concerning sex, race, or ethnicity. This study aims to examine the impact of these sensitive attributes on developing fair AI models that predict glaucoma progression to necessitating incisional glaucoma surgery.

DESIGN

Database study.

PARTICIPANTS

Thirty-nine thousand ninety patients with glaucoma, as identified by International Classification of Disease codes from 7 academic eye centers participating in the Sight OUtcomes Research Collaborative.

METHODS

We developed XGBoost models using 3 approaches: (1) excluding sensitive attributes as input features, (2) including them explicitly as input features, and (3) training separate models for each group. Model input features included demographic details, diagnosis codes, medications, and clinical information (intraocular pressure, visual acuity, etc.), from electronic health records. The models were trained on patients from 5 sites (N = 27 999) and evaluated on a held-out internal test set (N = 3499) and 2 external test sets consisting of N = 1550 and N = 2542 patients.

MAIN OUTCOMES AND MEASURES

Area under the receiver operating characteristic curve (AUROC) and equalized odds on the test set and external sites.

RESULTS

Six thousand six hundred eighty-two (17.1%) of 39 090 patients underwent glaucoma surgery with a mean age of 70.1 (standard deviation 14.6) years, 54.5% female, 62.3% White, 22.1% Black, and 4.7% Latinx/Hispanic. We found that not including the sensitive attributes led to better classification performance (AUROC: 0.77-0.82) but worsened fairness when evaluated on the internal test set. However, on external test sites, the opposite was true: including sensitive attributes resulted in better classification performance (AUROC: external #1 - [0.73-0.81], external #2 - [0.67-0.70]), but varying degrees of fairness for sex and race as measured by equalized odds.

CONCLUSIONS

Artificial intelligence models predicting whether patients with glaucoma progress to surgery demonstrated bias with respect to sex, race, and ethnicity. The effect of sensitive attribute inclusion and exclusion on fairness and performance varied based on internal versus external test sets. Prior to deployment, AI models should be evaluated for fairness on the target population.

FINANCIAL DISCLOSURES

Proprietary or commercial disclosure may be found in the Footnotes and Disclosures at the end of this article.

摘要

目的

尽管人工智能在青光眼预测方面取得了进展,但大多数研究缺乏多中心关注,且未考虑性别、种族或民族方面的公平性。本研究旨在探讨这些敏感属性对开发预测青光眼进展至需要进行切开性青光眼手术的公平人工智能模型的影响。

设计

数据库研究。

参与者

来自参与视力结果研究协作组的7个学术眼科中心,通过国际疾病分类代码识别出的39090例青光眼患者。

方法

我们使用3种方法开发了XGBoost模型:(1)排除敏感属性作为输入特征;(2)将它们明确作为输入特征包含在内;(3)为每个组训练单独的模型。模型输入特征包括电子健康记录中的人口统计学细节、诊断代码、药物治疗和临床信息(眼压、视力等)。模型在来自5个地点的患者(N = 27999)上进行训练,并在一个预留的内部测试集(N = 3499)和两个外部测试集(分别包含N = 1550和N = 2542例患者)上进行评估。

主要结局和指标

受试者操作特征曲线下面积(AUROC)以及测试集和外部站点上的均等赔率。

结果

39090例患者中有6682例(17.1%)接受了青光眼手术,平均年龄为70.1岁(标准差14.6),女性占54.5%,白人占62.3%,黑人占22.1%,拉丁裔/西班牙裔占4.7%。我们发现,不包括敏感属性会导致更好的分类性能(AUROC:0.77 - 0.82),但在内部测试集上评估时公平性会变差。然而,在外部测试站点上情况则相反:包括敏感属性会导致更好的分类性能(AUROC:外部测试集1 - [0.73 - 0.81],外部测试集2 - [0.67 - 0.70]),但根据均等赔率衡量,性别和种族的公平性程度各不相同。

结论

预测青光眼患者是否进展至手术的人工智能模型在性别、种族和民族方面表现出偏差。敏感属性的纳入和排除对公平性和性能的影响因内部测试集和外部测试集而异。在部署之前,应在目标人群中评估人工智能模型的公平性。

财务披露

在本文末尾的脚注和披露中可能会找到专有或商业披露信息。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a57c/11462200/06f03d41c011/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验