Laboratory of Experimental Cardiology, University Medical Center Utrecht, Utrecht University, The Netherlands (R.J.G.H., M.M., H.M.d.R.).
Robert M. Berne Cardiovascular Research Center (K.O., G.O.), New York. Victor Chang Cardiac Research Institute, Darlinghurst, Australia.
Circulation. 2021 Feb 16;143(7):713-726. doi: 10.1161/CIRCULATIONAHA.120.051231. Epub 2021 Jan 27.
Although sex differences in coronary artery disease are widely accepted with women developing more stable atherosclerosis than men, the underlying pathobiology of such differences remains largely unknown. In coronary artery disease, recent integrative systems biological studies have inferred gene regulatory networks (GRNs). Within these GRNs, key driver genes have shown great promise but have thus far been unidentified in women.
We generated sex-specific GRNs of the atherosclerotic arterial wall in 160 women and age-matched men in the STARNET study (Stockholm-Tartu Atherosclerosis Reverse Network Engineering Task). We integrated the female GRNs with single-cell RNA-sequencing data of the human atherosclerotic plaque and single-cell RNA sequencing of advanced atherosclerotic lesions from wild type and Klf4 knockout atherosclerotic smooth muscle cell (SMC) lineage-tracing mice.
By comparing sex-specific GRNs, we observed clear sex differences in network activity within the atherosclerotic tissues. Genes more active in women were associated with mesenchymal cells and endothelial cells, whereas genes more active in men were associated with the immune system. We determined that key drivers of GRNs active in female coronary artery disease were predominantly found in (SMCs by single-cell sequencing of the human atherosclerotic plaques, and higher expressed in female plaque SMCs, as well. To study the functions of these female SMC key drivers in atherosclerosis, we examined single-cell RNA sequencing of advanced atherosclerotic lesions from wild type and Klf4 knockout atherosclerotic SMC lineage-tracing mice. The female key drivers were found to be expressed by phenotypically modulated SMCs and affected by Klf4, suggesting that sex differences in atherosclerosis involve phenotypic switching of plaque SMCs.
Our systems approach provides novel insights into molecular mechanisms that underlie sex differences in atherosclerosis. To discover sex-specific therapeutic targets for atherosclerosis, an increased emphasis on sex-stratified approaches in the analysis of multi-omics data sets is warranted.
尽管冠状动脉疾病中的性别差异已被广泛接受,女性比男性更容易形成稳定的动脉粥样硬化,但这种差异的潜在病理生物学机制仍知之甚少。在冠状动脉疾病中,最近的综合系统生物学研究已经推断出基因调控网络(GRN)。在这些 GRN 中,关键驱动基因显示出巨大的潜力,但迄今为止尚未在女性中确定。
我们在 STARNET 研究(斯德哥尔摩-塔尔图动脉粥样硬化反向网络工程任务)中生成了 160 名女性和年龄匹配男性的动脉粥样硬化动脉壁的性别特异性 GRN。我们将女性的 GRN 与人类动脉粥样硬化斑块的单细胞 RNA 测序数据以及野生型和 Klf4 敲除动脉粥样硬化平滑肌细胞(SMC)谱系追踪小鼠的高级动脉粥样硬化病变的单细胞 RNA 测序进行了整合。
通过比较性别特异性 GRN,我们观察到动脉粥样硬化组织中网络活动存在明显的性别差异。在女性中更活跃的基因与间充质细胞和内皮细胞有关,而在男性中更活跃的基因与免疫系统有关。我们确定,在女性冠状动脉疾病中活跃的 GRN 的关键驱动因素主要存在于(SMC 中,通过对人类动脉粥样硬化斑块的单细胞测序确定,并且在女性斑块 SMC 中的表达更高。为了研究这些女性 SMC 关键驱动因素在动脉粥样硬化中的作用,我们检查了野生型和 Klf4 敲除动脉粥样硬化 SMC 谱系追踪小鼠的高级动脉粥样硬化病变的单细胞 RNA 测序。发现这些女性关键驱动因素由表型调节的 SMC 表达,并受 Klf4 影响,这表明动脉粥样硬化中的性别差异涉及斑块 SMC 的表型转换。
我们的系统方法为动脉粥样硬化中性别差异的分子机制提供了新的见解。为了发现动脉粥样硬化的性别特异性治疗靶点,有必要在多组学数据集的分析中增加对性别分层方法的重视。