Suppr超能文献

造血数学模型的最优实验设计

Optimal experimental design for mathematical models of haematopoiesis.

作者信息

Lomeli Luis Martinez, Iniguez Abdon, Tata Prasanthi, Jena Nilamani, Liu Zhong-Ying, Van Etten Richard, Lander Arthur D, Shahbaba Babak, Lowengrub John S, Minin Vladimir N

机构信息

Center for Complex Biological Systems, University of California Irvine, Irvine, CA, USA.

Division of Hematology/Oncology, University of California Irvine, Irvine, CA, USA.

出版信息

J R Soc Interface. 2021 Jan;18(174):20200729. doi: 10.1098/rsif.2020.0729. Epub 2021 Jan 27.

Abstract

The haematopoietic system has a highly regulated and complex structure in which cells are organized to successfully create and maintain new blood cells. It is known that feedback regulation is crucial to tightly control this system, but the specific mechanisms by which control is exerted are not completely understood. In this work, we aim to uncover the underlying mechanisms in haematopoiesis by conducting perturbation experiments, where animal subjects are exposed to an external agent in order to observe the system response and evolution. We have developed a novel Bayesian hierarchical framework for optimal design of perturbation experiments and proper analysis of the data collected. We use a deterministic model that accounts for feedback and feedforward regulation on cell division rates and self-renewal probabilities. A significant obstacle is that the experimental data are not longitudinal, rather each data point corresponds to a different animal. We overcome this difficulty by modelling the unobserved cellular levels as latent variables. We then use principles of Bayesian experimental design to optimally distribute time points at which the haematopoietic cells are quantified. We evaluate our approach using synthetic and real experimental data and show that an optimal design can lead to better estimates of model parameters.

摘要

造血系统具有高度调控且复杂的结构,其中细胞有序排列以成功生成并维持新的血细胞。已知反馈调节对于严格控制该系统至关重要,但实施控制的具体机制尚未完全明晰。在这项工作中,我们旨在通过开展扰动实验来揭示造血过程中的潜在机制,在这些实验中,动物受试者暴露于外部因素,以便观察系统的反应和演变。我们开发了一种新颖的贝叶斯分层框架,用于扰动实验的优化设计以及对所收集数据的恰当分析。我们使用一个确定性模型,该模型考虑了对细胞分裂速率和自我更新概率的反馈和前馈调节。一个重大障碍是实验数据并非纵向数据,而是每个数据点对应于不同的动物。我们通过将未观察到的细胞水平建模为潜在变量来克服这一困难。然后,我们运用贝叶斯实验设计原理来优化造血细胞定量的时间点分布。我们使用合成数据和实际实验数据评估我们的方法,并表明优化设计能够更好地估计模型参数。

相似文献

1
Optimal experimental design for mathematical models of haematopoiesis.造血数学模型的最优实验设计
J R Soc Interface. 2021 Jan;18(174):20200729. doi: 10.1098/rsif.2020.0729. Epub 2021 Jan 27.
10
Updates on Old and Weary Haematopoiesis.陈旧且疲惫的造血更新。
Int J Mol Sci. 2018 Aug 29;19(9):2567. doi: 10.3390/ijms19092567.

本文引用的文献

1
Stan: A Probabilistic Programming Language.斯坦:一种概率编程语言。
J Stat Softw. 2017;76. doi: 10.18637/jss.v076.i01. Epub 2017 Jan 11.
2
NITPicker: selecting time points for follow-up experiments.NITPicker:选择后续实验的时间点。
BMC Bioinformatics. 2019 Apr 2;20(1):166. doi: 10.1186/s12859-019-2717-5.
4
Visualizing hematopoiesis as a stochastic process.将造血视为一个随机过程。
Blood Adv. 2018 Oct 23;2(20):2637-2645. doi: 10.1182/bloodadvances.2018023705.
10
Understanding Hematological Toxicities Using Mathematical Modeling.利用数学模型了解血液学毒性。
Clin Pharmacol Ther. 2018 Oct;104(4):644-654. doi: 10.1002/cpt.1080. Epub 2018 May 1.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验