Suppr超能文献

三丝肌肌腱力与阻抗的力学模型。

A three filament mechanistic model of musculotendon force and impedance.

机构信息

Institute for Sport and Movement Science, University of Stuttgart, Stuttgart, Germany.

Institute of Engineering and Computational Mechanics, University of Stuttgart, Stuttgart, Germany.

出版信息

Elife. 2024 Sep 10;12:RP88344. doi: 10.7554/eLife.88344.

Abstract

The force developed by actively lengthened muscle depends on different structures across different scales of lengthening. For small perturbations, the active response of muscle is well captured by a linear-time-invariant (LTI) system: a stiff spring in parallel with a light damper. The force response of muscle to longer stretches is better represented by a compliant spring that can fix its end when activated. Experimental work has shown that the stiffness and damping (impedance) of muscle in response to small perturbations is of fundamental importance to motor learning and mechanical stability, while the huge forces developed during long active stretches are critical for simulating and predicting injury. Outside of motor learning and injury, muscle is actively lengthened as a part of nearly all terrestrial locomotion. Despite the functional importance of impedance and active lengthening, no single muscle model has all these mechanical properties. In this work, we present the viscoelastic-crossbridge active-titin (VEXAT) model that can replicate the response of muscle to length changes great and small. To evaluate the VEXAT model, we compare its response to biological muscle by simulating experiments that measure the impedance of muscle, and the forces developed during long active stretches. In addition, we have also compared the responses of the VEXAT model to a popular Hill-type muscle model. The VEXAT model more accurately captures the impedance of biological muscle and its responses to long active stretches than a Hill-type model and can still reproduce the force-velocity and force-length relations of muscle. While the comparison between the VEXAT model and biological muscle is favorable, there are some phenomena that can be improved: the low frequency phase response of the model, and a mechanism to support passive force enhancement.

摘要

主动拉长的肌肉产生的力取决于不同尺度拉长的不同结构。对于小的扰动,肌肉的主动响应很好地由线性时不变 (LTI) 系统来描述:一个硬弹簧与一个轻阻尼器并联。肌肉对更长伸展的力响应可以更好地用一个柔顺的弹簧来表示,当它被激活时,这个弹簧可以固定它的末端。实验工作表明,肌肉对小扰动的刚度和阻尼(阻抗)对运动学习和机械稳定性至关重要,而在长时间主动伸展过程中产生的巨大力对于模拟和预测损伤至关重要。除了运动学习和损伤,肌肉作为几乎所有陆地运动的一部分而被主动拉长。尽管阻抗和主动拉长具有重要的功能,但没有一个单一的肌肉模型具有所有这些机械特性。在这项工作中,我们提出了粘弹性交叉桥活性肌联蛋白 (VEXAT) 模型,该模型可以复制肌肉对大、小长度变化的响应。为了评估 VEXAT 模型,我们通过模拟测量肌肉阻抗和在长时间主动伸展过程中产生的力的实验,将其与生物肌肉的响应进行比较。此外,我们还比较了 VEXAT 模型与流行的 Hill 型肌肉模型的响应。与 Hill 型模型相比,VEXAT 模型更准确地捕捉了生物肌肉的阻抗及其对长时间主动伸展的响应,并且仍然可以再现肌肉的力-速度和力-长度关系。虽然 VEXAT 模型与生物肌肉的比较是有利的,但仍有一些现象可以改进:模型的低频相位响应,以及支持被动力增强的机制。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2e72/11386956/6ecb3963244c/elife-88344-fig1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验