Suppr超能文献

用于机器人集群觅食的信息交换设计模式及其在机器人控制算法中的应用

Information Exchange Design Patterns for Robot Swarm Foraging and Their Application in Robot Control Algorithms.

作者信息

Pitonakova Lenka, Crowder Richard, Bullock Seth

机构信息

Department of Computer Science, University of Bristol, Bristol, United Kingdom.

Department of Electronics and Computer Science, University of Southampton, Southampton, United Kingdom.

出版信息

Front Robot AI. 2018 Jun 7;5:47. doi: 10.3389/frobt.2018.00047. eCollection 2018.

Abstract

In swarm robotics, a design pattern provides high-level guidelines for the implementation of a particular robot behaviour and describes its impact on swarm performance. In this paper, we explore information exchange design patterns for robot swarm foraging. First, a method for the specification of design patterns for robot swarms is proposed that builds on previous work in this field and emphasises modular behaviour design, as well as information-centric micro-macro link analysis. Next, design pattern application rules that can facilitate the pattern usage in robot control algorithms are given. A catalogue of six design patterns is then presented. The patterns are derived from an extensive list of experiments reported in the swarm robotics literature, demonstrating the capability of the proposed method to identify distinguishing features of robot behaviour and their impact on swarm performance in a wide range of swarm implementations and experimental scenarios. Each pattern features a detailed description of robot behaviour and its associated parameters, facilitated by the usage of a multi-agent modeling language, BDRML, and an account of feedback loops and forces that affect the pattern's applicability. Scenarios in which the pattern has been used are described. The consequences of each design pattern on overall swarm performance are characterised within the Information-Cost-Reward framework, that makes it possible to formally relate the way in which robots acquire, share and utilise information. Finally, the patterns are validated by demonstrating how they improved the performance of foraging e-puck swarms and how they could guide algorithm design in other scenarios.

摘要

在群体机器人技术中,一种设计模式为特定机器人行为的实现提供了高层次指导方针,并描述了其对群体性能的影响。在本文中,我们探索用于机器人群体觅食的信息交换设计模式。首先,提出了一种用于规范机器人群体设计模式的方法,该方法基于该领域先前的工作,并强调模块化行为设计以及以信息为中心的微观 - 宏观链接分析。接下来,给出了能够促进设计模式在机器人控制算法中使用的应用规则。然后展示了一个包含六种设计模式的目录。这些模式源自群体机器人技术文献中报道的大量实验,证明了所提出方法在广泛的群体实现和实验场景中识别机器人行为的显著特征及其对群体性能影响的能力。每种模式都通过使用多智能体建模语言BDRML对机器人行为及其相关参数进行了详细描述,并说明了影响模式适用性的反馈回路和作用力。描述了使用该模式的场景。在信息 - 成本 - 奖励框架内对每种设计模式对整体群体性能的影响进行了表征,这使得能够正式关联机器人获取、共享和利用信息的方式。最后,通过展示这些模式如何提高觅食电子球群体的性能以及它们如何在其他场景中指导算法设计来对模式进行验证。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验