Xin Guiyang, Wolfslag Wouter, Lin Hsiu-Chin, Tiseo Carlo, Mistry Michael
School of Informatics, Institute of Perception, Action and Behaviour, The University of Edinburgh, Edinburgh, United Kingdom.
Edinburgh Centre for Robotics, The University of Edinburgh, Edinburgh, United Kingdom.
Front Robot AI. 2020 Apr 24;7:48. doi: 10.3389/frobt.2020.00048. eCollection 2020.
Quadruped robots require compliance to handle unexpected external forces, such as impulsive contact forces from rough terrain, or from physical human-robot interaction. This paper presents a locomotion controller using Cartesian impedance control to coordinate tracking performance and desired compliance, along with Quadratic Programming (QP) to satisfy friction cone constraints, unilateral constraints, and torque limits. First, we resort to projected inverse-dynamics to derive an analytical control law of Cartesian impedance control for constrained and underactuated systems (typically a quadruped robot). Second, we formulate a QP to compute the optimal torques that are as close as possible to the desired values resulting from Cartesian impedance control while satisfying all of the physical constraints. When the desired motion torques lead to violation of physical constraints, the QP will result in a trade-off solution that sacrifices motion performance to ensure physical constraints. The proposed algorithm gives us more insight into the system that benefits from an analytical derivation and more efficient computation compared to hierarchical QP (HQP) controllers that typically require a solution of three QPs or more. Experiments applied on the ANYmal robot with various challenging terrains show the efficiency and performance of our controller.
四足机器人需要具备柔顺性,以应对意外的外力,例如来自崎岖地形的冲击接触力,或者来自人机物理交互的力。本文提出了一种运动控制器,该控制器使用笛卡尔阻抗控制来协调跟踪性能和期望的柔顺性,并结合二次规划(QP)来满足摩擦锥约束、单边约束和扭矩限制。首先,我们借助投影逆动力学来推导受约束和欠驱动系统(通常是四足机器人)的笛卡尔阻抗控制解析控制律。其次,我们制定一个QP来计算最优扭矩,这些扭矩在满足所有物理约束的同时尽可能接近笛卡尔阻抗控制产生的值。当期望运动扭矩导致违反物理约束时,QP将产生一个折衷解决方案,即牺牲运动性能以确保物理约束。与通常需要求解三个或更多QP的分层QP(HQP)控制器相比,所提出的算法使我们对系统有了更深入的了解,并受益于解析推导和更高效的计算。在ANYmal机器人上对各种具有挑战性的地形进行的实验展示了我们控制器的效率和性能。