Suppr超能文献

上肢中风康复操作器的构型相关最优阻抗控制

Configuration-Dependent Optimal Impedance Control of an Upper Extremity Stroke Rehabilitation Manipulandum.

作者信息

Ghannadi Borna, Sharif Razavian Reza, McPhee John

机构信息

Systems Design Engineering, University of Waterloo, Waterloo, ON, Canada.

出版信息

Front Robot AI. 2018 Nov 1;5:124. doi: 10.3389/frobt.2018.00124. eCollection 2018.

Abstract

Robots are becoming a popular means of rehabilitation since they can decrease the laborious work of a therapist, and associated costs, and provide repeatable tasks. Many researchers have postulated that human motor control can be mathematically represented using optimal control theories, whereby some cost function is effectively maximized or minimized. However, such abilities are compromised in stroke patients. In this study, to promote rehabilitation of the stroke patient, a rehabilitation robot has been developed using optimal control theory. Despite numerous studies of control strategies for rehabilitation, there is a limited number of rehabilitation robots using optimal control theory. The main idea of this work is to show that impedance control gains cannot be kept constant for optimal performance of the robot using a feedback linearization approach. Hence, a general method for the real-time and optimal impedance control of an end-effector-based rehabilitation robot is proposed. The controller is developed for a 2 degree-of-freedom upper extremity stroke rehabilitation robot, and compared to a feedback linearization approach that uses the standard optimal impedance derived from covariance propagation equations. The new method will assign optimal impedance gains at each configuration of the robot while performing a rehabilitation task. The proposed controller is a linear quadratic regulator mapped from the operational space to the joint space. Parameters of the two controllers have been tuned using a unified biomechatronic model of the human and robot. The performances of the controllers were compared while operating the robot under four conditions of human movements (impaired, healthy, delayed, and time-advanced) along a reference trajectory, both in simulations and experiments. Despite the idealized and approximate nature of the human-robot model, the proposed controller worked well in experiments. Simulation and experimental results with the two controllers showed that, compared to the standard optimal controller, the rehabilitation system with the proposed optimal controller is assisting more in the active-assist therapy while resisting in active-constrained case. Furthermore, in passive therapy, the proposed optimal controller maintains the position error and interaction forces in safer regions. This is the result of updating the impedance in the operational space using a linear time-variant impedance model.

摘要

机器人正成为一种流行的康复手段,因为它们可以减轻治疗师的繁重工作以及相关成本,并提供可重复的任务。许多研究人员推测,人类运动控制可以用最优控制理论进行数学表示,即通过有效最大化或最小化某个成本函数来实现。然而,中风患者的这些能力会受到损害。在本研究中,为促进中风患者的康复,利用最优控制理论开发了一种康复机器人。尽管对康复控制策略进行了大量研究,但使用最优控制理论的康复机器人数量有限。这项工作的主要思想是表明,使用反馈线性化方法时,为使机器人达到最优性能,阻抗控制增益不能保持恒定。因此,提出了一种基于末端执行器的康复机器人实时最优阻抗控制的通用方法。该控制器是为一个两自由度上肢中风康复机器人开发的,并与使用协方差传播方程导出的标准最优阻抗的反馈线性化方法进行了比较。新方法将在机器人执行康复任务的每个配置下分配最优阻抗增益。所提出的控制器是一个从操作空间映射到关节空间的线性二次调节器。使用人和机器人的统一生物机电模型对两个控制器的参数进行了调整。在模拟和实验中,沿着参考轨迹在人类运动的四种条件(受损、健康、延迟和时间提前)下操作机器人时,对控制器的性能进行了比较。尽管人机模型具有理想化和近似性,但所提出的控制器在实验中运行良好。两个控制器的模拟和实验结果表明,与标准最优控制器相比,所提出的最优控制器的康复系统在主动辅助治疗中提供更多协助,而在主动约束情况下提供更多阻力。此外,在被动治疗中,所提出的最优控制器将位置误差和相互作用力保持在更安全的区域。这是使用线性时变阻抗模型在操作空间中更新阻抗的结果。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c23a/7805823/3fc35dfdebcc/frobt-05-00124-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验