Suppr超能文献

Pronto:用于现实场景中四足机器人的多传感器状态估计器

Pronto: A Multi-Sensor State Estimator for Legged Robots in Real-World Scenarios.

作者信息

Camurri Marco, Ramezani Milad, Nobili Simona, Fallon Maurice

机构信息

Dynamic Robot Systems, Department of Engineering Science, Oxford Robotics Institute, University of Oxford, Oxford, United Kingdom.

School of Informatics, Institute of Perception, Action and Behavior, University of Edinburgh, Edinburgh, United Kingdom.

出版信息

Front Robot AI. 2020 Jun 5;7:68. doi: 10.3389/frobt.2020.00068. eCollection 2020.

Abstract

In this paper, we present a modular and flexible state estimation framework for legged robots operating in real-world scenarios, where environmental conditions, such as occlusions, low light, rough terrain, and dynamic obstacles can severely impair estimation performance. At the core of the proposed estimation system, called Pronto, is an Extended Kalman Filter (EKF) that fuses IMU and Leg Odometry sensing for pose and velocity estimation. We also show how Pronto can integrate pose corrections from visual and LIDAR and odometry to correct pose drift in a loosely coupled manner. This allows it to have a real-time proprioceptive estimation thread running at high frequency (250-1,000 Hz) for use in the control loop while taking advantage of occasional (and often delayed) low frequency (1-15 Hz) updates from exteroceptive sources, such as cameras and LIDARs. To demonstrate the robustness and versatility of the approach, we have tested it on a variety of legged platforms, including two humanoid robots (the Boston Dynamics Atlas and NASA Valkyrie) and two dynamic quadruped robots (IIT HyQ and ANYbotics ANYmal) for more than 2 h of total runtime and 1.37 km of distance traveled. The tests were conducted in a number of different field scenarios under the conditions described above. The algorithms presented in this paper are made available to the research community as open-source ROS packages.

摘要

在本文中,我们提出了一种模块化且灵活的状态估计框架,用于在现实场景中运行的腿式机器人,在这些场景中,诸如遮挡、低光照、崎岖地形和动态障碍物等环境条件会严重损害估计性能。所提出的估计系统名为Pronto,其核心是一个扩展卡尔曼滤波器(EKF),它融合了惯性测量单元(IMU)和腿部里程计传感来进行位姿和速度估计。我们还展示了Pronto如何以松耦合方式集成来自视觉、激光雷达和里程计的位姿校正,以校正位姿漂移。这使得它能够有一个高频(250 - 1000 Hz)运行的实时本体感知估计线程用于控制回路,同时利用来自外部感知源(如相机和激光雷达)的偶尔(且通常有延迟)的低频(1 - 15 Hz)更新。为了证明该方法的鲁棒性和通用性,我们在多种腿式平台上对其进行了测试,包括两个人形机器人(波士顿动力公司的阿特拉斯和美国国家航空航天局的瓦尔基里)以及两个动态四足机器人(意大利理工学院的HyQ和ANYbotics公司的ANYmal),总运行时间超过2小时,行驶距离达1.37千米。测试是在上述条件下的多个不同野外场景中进行的。本文中提出的算法作为开源ROS包提供给研究社区。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a1de/7805780/d1d8a7c4f052/frobt-07-00068-g0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验