Suppr超能文献

增强型室内环境视惯性 SLAM 系统,辅助灭点估计。

An Enhanced Pedestrian Visual-Inertial SLAM System Aided with Vanishing Point in Indoor Environments.

机构信息

College of Sino-German Science and Technology, Qingdao University of Science and Technology, Qingdao 266061, China.

College of Automation and Electronic Engineering, Qingdao University of Science and Technology, Qingdao 266061, China.

出版信息

Sensors (Basel). 2021 Nov 9;21(22):7428. doi: 10.3390/s21227428.

Abstract

The visual-inertial simultaneous localization and mapping (SLAM) is a feasible indoor positioning system that combines the visual SLAM with inertial navigation. There are accumulated drift errors in inertial navigation due to the state propagation and the bias of the inertial measurement unit (IMU) sensor. The visual-inertial SLAM can correct the drift errors via loop detection and local pose optimization. However, if the trajectory is not a closed loop, the drift error might not be significantly reduced. This paper presents a novel pedestrian dead reckoning (PDR)-aided visual-inertial SLAM, taking advantage of the enhanced vanishing point (VP) observation. The VP is integrated into the visual-inertial SLAM as an external observation without drift error to correct the system drift error. Additionally, the estimated trajectory's scale is affected by the IMU measurement errors in visual-inertial SLAM. Pedestrian dead reckoning (PDR) velocity is employed to constrain the double integration result of acceleration measurement from the IMU. Furthermore, to enhance the proposed system's robustness and the positioning accuracy, the local optimization based on the sliding window and the global optimization based on the segmentation window are proposed. A series of experiments are conducted using the public ADVIO dataset and a self-collected dataset to compare the proposed system with the visual-inertial SLAM. Finally, the results demonstrate that the proposed optimization method can effectively correct the accumulated drift error in the proposed visual-inertial SLAM system.

摘要

视觉惯性同时定位与建图 (SLAM) 是一种可行的室内定位系统,它将视觉 SLAM 与惯性导航相结合。由于状态传播和惯性测量单元 (IMU) 传感器的偏差,惯性导航会累积漂移误差。视觉惯性 SLAM 可以通过环路检测和局部姿态优化来纠正漂移误差。然而,如果轨迹不是闭环的,漂移误差可能不会显著降低。本文提出了一种新颖的行人航位推算 (PDR) 辅助视觉惯性 SLAM,利用增强的消失点 (VP) 观测。VP 作为无漂移误差的外部观测被集成到视觉惯性 SLAM 中,以纠正系统漂移误差。此外,在视觉惯性 SLAM 中,估计轨迹的比例会受到 IMU 测量误差的影响。行人航位推算 (PDR) 速度用于约束来自 IMU 的加速度测量的双重积分结果。此外,为了提高所提出系统的鲁棒性和定位精度,提出了基于滑动窗口的局部优化和基于分段窗口的全局优化。使用公共 ADVIO 数据集和自己收集的数据集进行了一系列实验,以将所提出的系统与视觉惯性 SLAM 进行比较。最后,结果表明,所提出的优化方法可以有效地纠正所提出的视觉惯性 SLAM 系统中的累积漂移误差。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/deb6/8624951/2f157229562f/sensors-21-07428-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验