Suppr超能文献

你还在关注我吗?从机器人视角进行的持续参与度评估。

Are You Still With Me? Continuous Engagement Assessment From a Robot's Point of View.

作者信息

Del Duchetto Francesco, Baxter Paul, Hanheide Marc

机构信息

Lincoln Centre for Autonomous Systems, School of Computer Science, University of Lincoln, Lincoln, United Kingdom.

出版信息

Front Robot AI. 2020 Sep 16;7:116. doi: 10.3389/frobt.2020.00116. eCollection 2020.

Abstract

Continuously measuring the engagement of users with a robot in a Human-Robot Interaction (HRI) setting paves the way toward reinforcement learning, improve metrics of interaction quality, and can guide interaction design and behavior optimization. However, engagement is often considered very multi-faceted and difficult to capture in a workable and generic computational model that can serve as an overall measure of engagement. Building upon the intuitive ways humans successfully can assess situation for a degree of engagement when they see it, we propose a novel regression model (utilizing CNN and LSTM networks) enabling robots to compute a single scalar engagement during interactions with humans from standard video streams, obtained from the point of view of an interacting robot. The model is based on a long-term dataset from an autonomous tour guide robot deployed in a public museum, with continuous annotation of a numeric engagement assessment by three independent coders. We show that this model not only can predict engagement very well in our own application domain but show its successful transfer to an entirely different dataset (with different tasks, environment, camera, robot and people). The trained model and the software is available to the HRI community, at https://github.com/LCAS/engagement_detector, as a tool to measure engagement in a variety of settings.

摘要

在人机交互(HRI)场景中持续测量用户与机器人的互动程度,为强化学习、改善交互质量指标以及指导交互设计和行为优化铺平了道路。然而,互动程度通常被认为具有多方面的特性,很难在一个可行的通用计算模型中进行捕捉,而这个模型本应作为互动程度的整体衡量标准。基于人类在看到某种情况时能够成功评估其参与程度的直观方式,我们提出了一种新颖的回归模型(利用卷积神经网络和长短期记忆网络),使机器人能够从交互机器人的视角,根据标准视频流在与人类互动过程中计算出一个单一的标量互动程度。该模型基于一个来自部署在公共博物馆的自主导览机器人的长期数据集,由三名独立编码员对数值互动评估进行持续标注。我们表明,这个模型不仅在我们自己的应用领域中能够很好地预测互动程度,还展示了它成功迁移到一个完全不同的数据集(具有不同的任务、环境、摄像头、机器人和人员)的能力。训练好的模型和软件已在https://github.com/LCAS/engagement_detector上提供给HRI社区,作为在各种场景中测量互动程度的工具。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/84c5/7805701/f4b8f842c4e5/frobt-07-00116-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验