Suppr超能文献

促进社交参与的机器人运动学习框架

Robotic Motion Learning Framework to Promote Social Engagement.

作者信息

Burns Rachael, Jeon Myounghoon, Park Chung Hyuk

机构信息

The George Washington University.

Michigan Technological University.

出版信息

Appl Sci (Basel). 2018 Feb;8(2). doi: 10.3390/app8020241. Epub 2018 Feb 5.

Abstract

Imitation is a powerful component of communication between people, and it poses an important implication in improving the quality of interaction in the field of human-robot interaction (HRI). This paper discusses a novel framework designed to improve human-robot interaction through robotic imitation of a participant's gestures. In our experiment, a humanoid robotic agent socializes with and plays games with a participant. For the experimental group, the robot additionally imitates one of the participant's novel gestures during a play session. We hypothesize that the robot's use of imitation will increase the participant's openness towards engaging with the robot. Experimental results from a user study of 12 subjects show that post-imitation, experimental subjects displayed a more positive emotional state, had higher instances of mood contagion towards the robot, and interpreted the robot to have a higher level of autonomy than their control group counterparts did. These results point to an increased participant interest in engagement fueled by personalized imitation during interaction.

摘要

模仿是人与人之间交流的一个重要组成部分,并且它在提高人机交互(HRI)领域的互动质量方面具有重要意义。本文讨论了一个旨在通过机器人模仿参与者的手势来改善人机交互的新颖框架。在我们的实验中,一个人形机器人代理与一名参与者进行社交并一起玩游戏。对于实验组,机器人在游戏过程中还会额外模仿参与者的一个新手势。我们假设机器人使用模仿将增加参与者与机器人互动的开放性。一项针对12名受试者的用户研究的实验结果表明,模仿后,实验组受试者表现出更积极的情绪状态,对机器人产生情绪感染的情况更多,并且认为机器人比对照组的机器人具有更高的自主性。这些结果表明,互动过程中的个性化模仿激发了参与者更高的参与兴趣。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2b96/9109876/bdf5baf60af2/nihms-1750828-f0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验