Suppr超能文献

基于分层触觉的灵巧手中操作任务控制分解

Hierarchical Tactile-Based Control Decomposition of Dexterous In-Hand Manipulation Tasks.

作者信息

Veiga Filipe, Akrour Riad, Peters Jan

机构信息

Computer Science and Artificial Intelligence Laboratory (CSAIL), Massachusetts Institute of Technology, Cambridge, MA, United States.

Intelligent Autonomous Systems, Technische Universität Darmstadt, Darmstadt, Germany.

出版信息

Front Robot AI. 2020 Nov 19;7:521448. doi: 10.3389/frobt.2020.521448. eCollection 2020.

Abstract

In-hand manipulation and grasp adjustment with dexterous robotic hands is a complex problem that not only requires highly coordinated finger movements but also deals with interaction variability. The control problem becomes even more complex when introducing tactile information into the feedback loop. Traditional approaches do not consider tactile feedback and attempt to solve the problem either by relying on complex models that are not always readily available or by constraining the problem in order to make it more tractable. In this paper, we propose a hierarchical control approach where a higher level policy is learned through reinforcement learning, while low level controllers ensure grip stability throughout the manipulation action. The low level controllers are independent grip stabilization controllers based on tactile feedback. The independent controllers allow reinforcement learning approaches to explore the manipulation tasks state-action space in a more structured manner. We show that this structure allows learning the unconstrained task with RL methods that cannot learn it in a non-hierarchical setting. The low level controllers also provide an abstraction to the tactile sensors input, allowing transfer to real robot platforms. We show preliminary results of the transfer of policies trained in simulation to the real robot hand.

摘要

使用灵巧的机器人手进行手中操作和抓握调整是一个复杂的问题,它不仅需要高度协调的手指运动,还涉及交互的变异性。当将触觉信息引入反馈回路时,控制问题变得更加复杂。传统方法不考虑触觉反馈,要么试图依靠并不总是容易获得的复杂模型来解决问题,要么通过对问题进行约束以使它更易于处理。在本文中,我们提出了一种分层控制方法,其中通过强化学习学习高层策略,而低层控制器在整个操作过程中确保抓握稳定性。低层控制器是基于触觉反馈的独立抓握稳定控制器。这些独立的控制器允许强化学习方法以更结构化的方式探索操作任务的状态 - 动作空间。我们表明,这种结构允许使用在非分层设置中无法学习的强化学习方法来学习无约束任务。低层控制器还为触觉传感器输入提供了一种抽象,允许转移到实际的机器人平台。我们展示了在模拟中训练的策略转移到实际机器人手的初步结果。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/47e0/7805629/da4a4e2dfb56/frobt-07-521448-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验