Suppr超能文献

用于光谱域光学相干断层扫描和光学相干断层扫描血管造影图像的脉络膜新生血管融合可视化

Choroidal neovascularization fusion visualization for spectral-domain optical coherence tomography and optical coherence tomography angiography images.

作者信息

Huang Chen, Xie Keren, Zhang Yuhan, Li Mingchao, Yuan Songtao, Chen Qiang

机构信息

School of Computer Science and Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China.

Department of Ophthalmology, The First Affiliated Hospital with Nanjing Medical University, Nanjing, 210029, China.

出版信息

Med Phys. 2021 Apr;48(4):1731-1738. doi: 10.1002/mp.14737. Epub 2021 Feb 19.

Abstract

PURPOSE

The spectral-domain optical coherence tomography (SD-OCT) images and OCT angiography (OCTA) images can provide complementary information for choroidal neovascularization (CNV) visualization. We expected to simultaneously display multifaceted characteristics of CNV in a single projection image.

METHODS

We proposed a fusion method for CNV visualization by combining structural and angiographic images, which mainly involves four steps: (a) Generate SD-OCT and OCTA projection images from original volumetric data with retinal layer restriction. (b) For SD-OCT projection images, enhance retinal vessels and CNV. (c) For OCTA images, detect CNV region based on multimodal data and display the neovascularization in false color. (d) A maximum fusion strategy was adopted to generate the fused images.

RESULTS

Experimental results with 30 cases from 30 patients demonstrate that the fused images are more effective in displaying CNV than single-modality projection images. The average information entropy and the mean gradient in the CNV regions for SD-OCT projection images, OCTA images, and the fusion images are 4.66/0.21, 5.45/0.45, and 6.8/0.58, respectively.

CONCLUSIONS

The proposed method is more effective for CNV visualization than the conventional single-modality image-based method. The proposed method can combine complementary information from multimodal images and provide a satisfying visual effect.

摘要

目的

光谱域光学相干断层扫描(SD-OCT)图像和光学相干断层扫描血管造影(OCTA)图像可为脉络膜新生血管(CNV)可视化提供互补信息。我们期望在单个投影图像中同时显示CNV的多方面特征。

方法

我们提出了一种通过结合结构图像和血管造影图像进行CNV可视化的融合方法,主要包括四个步骤:(a)从具有视网膜层限制的原始体积数据生成SD-OCT和OCTA投影图像。(b)对于SD-OCT投影图像,增强视网膜血管和CNV。(c)对于OCTA图像,基于多模态数据检测CNV区域并用伪彩色显示新生血管。(d)采用最大融合策略生成融合图像。

结果

对30例患者的30个病例进行的实验结果表明,融合图像在显示CNV方面比单模态投影图像更有效。SD-OCT投影图像、OCTA图像和融合图像在CNV区域的平均信息熵和平均梯度分别为4.66/0.21、5.45/0.45和6.8/0.58。

结论

所提出的方法在CNV可视化方面比传统的基于单模态图像的方法更有效。该方法可以结合多模态图像的互补信息并提供令人满意的视觉效果。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验