Yu Han, Pan Mingao, Sun Rui, Agunawela Indunil, Zhang Jianquan, Li Yuhao, Qi Zhenyu, Han Han, Zou Xinhui, Zhou Wentao, Chen Shangshang, Lai Joshua Yuk Lin, Luo Siwei, Luo Zhenghui, Zhao Dahui, Lu Xinhui, Ade Harald, Huang Fei, Min Jie, Yan He
The Institute for Advanced Studies, Wuhan University, Wuhan, 430072, China.
Hong Kong University of Science and Technology-Shenzhen Research Institute, No. 9, Yuexing 1st RD, Hi-tech Park, Nanshan, Shenzhen, 518057, China.
Angew Chem Int Ed Engl. 2021 Apr 26;60(18):10137-10146. doi: 10.1002/anie.202016284. Epub 2021 Mar 17.
Polymerization sites of small molecule acceptors (SMAs) play vital roles in determining device performance of all-polymer solar cells (all-PSCs). Different from our recent work about fluoro- and bromo- co-modified end group of IC-FBr (a mixture of IC-FBr1 and IC-FBr2), in this paper, we synthesized and purified two regiospecific fluoro- and bromo- substituted end groups (IC-FBr-o & IC-FBr-m), which were then employed to construct two regio-regular polymer acceptors named PYF-T-o and PYF-T-m, respectively. In comparison with its isomeric counterparts named PYF-T-m with different conjugated coupling sites, PYF-T-o exhibits stronger and bathochromic absorption to achieve better photon harvesting. Meanwhile, PYF-T-o adopts more ordered inter-chain packing and suitable phase separation after blending with the donor polymer PM6, which resulted in suppressed charge recombination and efficient charge transport. Strikingly, we observed a dramatic performance difference between the two isomeric polymer acceptors PYF-T-o and PYF-T-m. While devices based on PM6:PYF-T-o can yield power conversion efficiency (PCE) of 15.2 %, devices based on PM6:PYF-T-m only show poor efficiencies of 1.4 %. This work demonstrates the success of configuration-unique fluorinated end groups in designing high-performance regular polymer acceptors, which provides guidelines towards developing all-PSCs with better efficiencies.
小分子受体(SMA)的聚合位点在决定全聚合物太阳能电池(all-PSC)的器件性能方面起着至关重要的作用。与我们最近关于IC-FBr(IC-FBr1和IC-FBr2的混合物)的氟和溴共修饰端基的工作不同,在本文中,我们合成并纯化了两个区域特异性的氟和溴取代端基(IC-FBr-o和IC-FBr-m),然后分别用它们构建了两个区域规整的聚合物受体,命名为PYF-T-o和PYF-T-m。与其具有不同共轭耦合位点的异构体PYF-T-m相比,PYF-T-o表现出更强的红移吸收,以实现更好的光子捕获。同时,PYF-T-o在与供体聚合物PM6共混后采用了更有序的链间堆积和合适的相分离,这导致电荷复合受到抑制,电荷传输效率提高。引人注目的是,我们观察到两种异构体聚合物受体PYF-T-o和PYF-T-m之间存在显著的性能差异。基于PM6:PYF-T-o的器件可产生15.2%的功率转换效率(PCE),而基于PM6:PYF-T-m的器件仅显示出1.4%的低效率。这项工作证明了构型独特的氟化端基在设计高性能规整聚合物受体方面的成功,为开发具有更高效率的全聚合物太阳能电池提供了指导。