Chen Fang, Ma Tianyi, Zhang Tierui, Zhang Yihe, Huang Hongwei
Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences, Beijing, 100083, China.
Discipline of Chemistry, School of Environmental & Life Sciences, The University of Newcastle (UON), Callaghan, NSW, 2308, Australia.
Adv Mater. 2021 Mar;33(10):e2005256. doi: 10.1002/adma.202005256. Epub 2021 Jan 27.
Semiconductor-based photocatalysis as a productive technology furnishes a prospective solution to environmental and renewable energy issues, but its efficiency greatly relies on the effective bulk and surface separation of photoexcited charge carriers. Exploitation of atomic-level strategies allows in-depth understanding on the related mechanisms and enables bottom-up precise design of photocatalysts, significantly enhancing photocatalytic activity. Herein, the advances on atomic-level charge separation strategies toward developing robust photocatalysts are highlighted, elucidating the fundamentals of charge separation and transfer processes and advanced probing techniques. The atomic-level bulk charge separation strategies, embodied by regulation of charge movement pathway and migration dynamic, boil down to shortening the charge diffusion distance to the atomic-scale, establishing atomic-level charge transfer channels, and enhancing the charge separation driving force. Meanwhile, regulating the in-plane surface structure and spatial surface structure are summarized as atomic-level surface charge separation strategies. Moreover, collaborative strategies for simultaneous manipulation of bulk and surface photocharges are also introduced. Finally, the existing challenges and future prospects for fabrication of state-of-the-art photocatalysts are discussed on the basis of a thorough comprehension of atomic-level charge separation strategies.
基于半导体的光催化作为一种实用技术,为环境和可再生能源问题提供了一个有前景的解决方案,但其效率在很大程度上依赖于光激发电荷载流子在体相和表面的有效分离。开发原子级策略有助于深入理解相关机制,并实现光催化剂的自下而上的精确设计,从而显著提高光催化活性。在此,重点介绍了在开发高效光催化剂方面原子级电荷分离策略的进展,阐明了电荷分离和转移过程的基本原理以及先进的探测技术。原子级体相电荷分离策略,体现在电荷移动路径和迁移动力学的调控上,归结为将电荷扩散距离缩短至原子尺度、建立原子级电荷转移通道以及增强电荷分离驱动力。同时,调控面内表面结构和空间表面结构被总结为原子级表面电荷分离策略。此外,还介绍了同时操纵体相和表面光电荷的协同策略。最后,在全面理解原子级电荷分离策略的基础上,讨论了制备先进光催化剂面临的现有挑战和未来前景。