Liu Mingwang, Yang Wenhong, Xiao Runshi, Li Jinli, Tan Rong, Qin Ying, Bai Yuxuan, Zheng Lirong, Hu Liuyong, Gu Wenling, Zhu Chengzhou
State Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, China.
Hubei Key Laboratory of Plasma Chemistry and Advanced Materials, Hubei Engineering Technology Research Center of Optoelectronic and New Energy Materials, Wuhan Institute of Technology, Wuhan 430205, China.
Natl Sci Rev. 2024 Dec 26;12(3):nwae465. doi: 10.1093/nsr/nwae465. eCollection 2025 Mar.
The construction of chemical bonds at heterojunction interfaces currently presents a promising avenue for enhancing photogenerated carrier interfacial transfer. However, the deliberate modulation of these interfacial chemical bonds remains a significant challenge. In this study, we successfully established a junction composed of atomic-level Pt-doped CeO and 2D metalloporphyrins metal-organic framework nanosheets (Pt-CeO/CuTCPP(Fe)), which enables the realization of photoelectric enhancement by regulating the interfacial Fe-O bond and optimizing the built-in electric field. Atomic-level Pt doping in CeO leads to an increased density of oxygen vacancies and lattice mutation, which induces a transition in interfacial Fe-O bonds from adsorbed oxygen (Fe-O) to lattice oxygen (Fe-O). This transition changes the interfacial charge flow pathway from Fe-O-Ce to Fe-O, effectively reducing the carrier transport distance along the atomic-level charge transport highway. This results in a 2.5-fold enhancement in photoelectric performance compared with the CeO/CuTCPP(Fe). Furthermore, leveraging the peroxidase-like activity of the junction, we employed this functional heterojunction interface to develop a photoelectrochemical immunoassay for the sensitive detection of prostate-specific antigens.
异质结界面处化学键的构建目前是增强光生载流子界面转移的一条有前景的途径。然而,对这些界面化学键进行有意调控仍然是一项重大挑战。在本研究中,我们成功构建了由原子级铂掺杂的二氧化铈和二维金属卟啉金属有机框架纳米片组成的结(Pt-CeO/CuTCPP(Fe)),通过调节界面铁-氧键和优化内建电场实现了光电增强。二氧化铈中的原子级铂掺杂导致氧空位密度增加和晶格突变,促使界面铁-氧键从吸附氧(Fe-O)向晶格氧(Fe-O)转变。这种转变将界面电荷流动路径从Fe-O-Ce变为Fe-O,有效缩短了沿原子级电荷传输通道的载流子传输距离。与CeO/CuTCPP(Fe)相比,光电性能提高了2.5倍。此外,利用该结的类过氧化物酶活性,我们采用这种功能性异质结界面开发了一种用于灵敏检测前列腺特异性抗原的光电化学免疫分析方法。