Suppr超能文献

多尺度建模表明,介电差异使钠通道比钾通道更快。

Multiscale modeling shows that dielectric differences make NaV channels faster than KV channels.

机构信息

Department of Chemistry, Biology and Biotechnology, University of Perugia, Perugia, Italy.

Department of Physiology and Biophysics, Rush University, Chicago, IL.

出版信息

J Gen Physiol. 2021 Feb 1;153(2). doi: 10.1085/jgp.202012706.

Abstract

The generation of action potentials in excitable cells requires different activation kinetics of voltage-gated Na (NaV) and K (KV) channels. NaV channels activate much faster and allow the initial Na+ influx that generates the depolarizing phase and propagates the signal. Recent experimental results suggest that the molecular basis for this kinetic difference is an amino acid side chain located in the gating pore of the voltage sensor domain, which is a highly conserved isoleucine in KV channels but an equally highly conserved threonine in NaV channels. Mutagenesis suggests that the hydrophobicity of this side chain in Shaker KV channels regulates the energetic barrier that gating charges cross as they move through the gating pore and control the rate of channel opening. We use a multiscale modeling approach to test this hypothesis. We use high-resolution molecular dynamics to study the effect of the mutation on polarization charge within the gating pore. We then incorporate these results in a lower-resolution model of voltage gating to predict the effect of the mutation on the movement of gating charges. The predictions of our hierarchical model are fully consistent with the tested hypothesis, thus suggesting that the faster activation kinetics of NaV channels comes from a stronger dielectric polarization by threonine (NaV channel) produced as the first gating charge enters the gating pore compared with isoleucine (KV channel).

摘要

可兴奋细胞中动作电位的产生需要电压门控 Na(NaV)和 K(KV)通道的不同激活动力学。NaV 通道的激活速度要快得多,并且允许初始 Na+内流,从而产生去极化相并传播信号。最近的实验结果表明,这种动力学差异的分子基础是位于电压传感器域门控孔中的一个氨基酸侧链,该侧链在 KV 通道中高度保守,为异亮氨酸,而在 NaV 通道中高度保守,为苏氨酸。突变表明,Shaker KV 通道中该侧链的疏水性调节了门控电荷在通过门控孔移动时所跨越的能量障碍,并控制了通道的开启速度。我们使用多尺度建模方法来检验这一假设。我们使用高分辨率分子动力学来研究突变对门控孔内极化电荷的影响。然后,我们将这些结果纳入电压门控的较低分辨率模型中,以预测突变对门控电荷移动的影响。我们分层模型的预测与经过测试的假设完全一致,因此表明 NaV 通道更快的激活动力学来自于第一个门控电荷进入门控孔时产生的苏氨酸(NaV 通道)比异亮氨酸(KV 通道)更强的介电极化。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验