Department of Pathology and Laboratory Medicine, Brown University, Providence, RI, USA.
The School of Engineering, Brown University, Providence, RI, USA.
Nanotoxicology. 2021 Apr;15(3):400-417. doi: 10.1080/17435390.2021.1874562. Epub 2021 Jan 27.
The development and production of engineered 2D nanomaterials are expanding exponentially, increasing the risk of their release into the aquatic environment. A recent study showed 2D MnO nanosheets, under development for energy and biomedical applications, dissolve upon interaction with biological reducing agents, resulting in depletion of intracellular glutathione levels within fish gill cells. However, little is known concerning their toxicity and interactions with subcellular organelles. To address this gap, we examined cellular uptake, cytotoxicity and mitochondrial effects of 2D MnO nanosheets using an fish gill cell line to represent a target tissue of rainbow trout, a freshwater indicator species. The data demonstrate cellular uptake of MnO nanosheets into lysosomes and potential mechanisms of dissolution within the lysosomal compartment. MnO nanosheets induced severe mitochondrial dysfunction at sub-cytotoxic doses. Quantitative, single cell fluorescent imaging revealed mitochondrial fission and impaired mitochondrial membrane potential following MnO nanosheet exposure. Seahorse analyses for cellular respiration revealed that MnO nanosheets inhibited basal respiration, maximal respiration and the spare respiratory capacity of gill cells, indicating mitochondrial dysfunction and reduced cellular respiratory activity. MnO nanosheet exposure also inhibited ATP production, further supporting the suppression of mitochondrial function and cellular respiration. Together, these observations indicate that 2D MnO nanosheets impair the ability of gill cells to respond to energy demands or prolonged stress. Finally, our data demonstrate significant differences in the toxicity of the 2D MnO nanosheets and their microparticle counterparts. This exemplifies the importance of considering the unique physical characteristics of 2D nanomaterials when conducting safety assessments.
二维纳米材料的工程化开发和生产呈指数级增长,增加了它们释放到水生环境中的风险。最近的一项研究表明,正在开发用于能源和生物医学应用的二维 MnO 纳米片与生物还原剂相互作用时会溶解,导致鱼类鳃细胞内谷胱甘肽水平耗竭。然而,关于它们的毒性及其与亚细胞器的相互作用知之甚少。为了填补这一空白,我们使用一种鱼类鳃细胞系研究了二维 MnO 纳米片的细胞摄取、细胞毒性和线粒体效应,以代表虹鳟鱼的靶组织,虹鳟鱼是一种淡水指示物种。数据表明 MnO 纳米片被细胞摄取到溶酶体中,并在溶酶体腔内可能发生溶解的机制。MnO 纳米片在亚细胞毒性剂量下诱导严重的线粒体功能障碍。定量、单细胞荧光成像显示 MnO 纳米片暴露后线粒体裂变和线粒体膜电位受损。细胞呼吸的 Seahorse 分析表明,MnO 纳米片抑制了鳃细胞的基础呼吸、最大呼吸和备用呼吸能力,表明线粒体功能障碍和细胞呼吸活性降低。MnO 纳米片暴露还抑制了 ATP 的产生,进一步支持了线粒体功能和细胞呼吸的抑制。总之,这些观察结果表明,二维 MnO 纳米片损害了鳃细胞应对能量需求或长期应激的能力。最后,我们的数据表明,二维 MnO 纳米片及其微粒对应物的毒性存在显著差异。这说明了在进行安全性评估时考虑二维纳米材料独特物理特性的重要性。