Omidvar Ramin, Ayala Yareni A, Brandel Annette, Hasenclever Lukas, Helmstädter Martin, Rohrbach Alexander, Römer Winfried, Madl Josef
Faculty of Biology, University of Freiburg, Schänzlestraße 1, 79104 Freiburg, Germany.
Department of Microsystems Engineering (IMTEK), University of Freiburg, Georges-Köhler-Allee 105, 79110 Freiburg, Germany.
Nanoscale. 2021 Feb 25;13(7):4016-4028. doi: 10.1039/d0nr07726g.
Interactions of the bacterial lectin LecA with the host cells glycosphingolipid Gb3 have been shown to be crucial for the cellular uptake of the bacterium Pseudomonas aeruginosa. LecA-induced Gb3 clustering, referred to as lipid zipper mechanism, leads to full membrane engulfment of the bacterium. Here, we aim for a nanoscale force characterization of this mechanism using two complementary force probing techniques, atomic force microscopy (AFM) and optical tweezers (OT). The LecA-Gb3 interactions are reconstituted using giant unilamellar vesicles (GUVs), a well-controlled minimal system mimicking the plasma membrane and nanoscale forces between either bacteria (PAO1 wild-type and LecA-deletion mutant strains) or LecA-coated probes (as minimal, synthetic bacterial model) and vesicles are measured. LecA-Gb3 interactions strengthen the bacterial attachment to the membrane (1.5-8-fold) depending on the membrane tension and the applied technique. Moreover, significantly less energy (reduction up to 80%) is required for the full uptake of LecA-coated beads into Gb3-functionalized vesicles. This quantitative approach highlights that lectin-glycolipid interactions provide adequate forces and energies to drive bacterial attachment and uptake.
细菌凝集素LecA与宿主细胞糖鞘脂Gb3的相互作用已被证明对铜绿假单胞菌的细胞摄取至关重要。LecA诱导的Gb3聚集,即脂质拉链机制,导致细菌被完全膜包裹。在此,我们旨在使用两种互补的力探测技术,原子力显微镜(AFM)和光镊(OT),对该机制进行纳米级力表征。利用巨型单层囊泡(GUVs)重建LecA-Gb3相互作用,GUVs是一种模拟质膜的可控最小系统,并测量细菌(PAO1野生型和LecA缺失突变株)或LecA包被探针(作为最小的合成细菌模型)与囊泡之间的纳米级力。根据膜张力和应用技术,LecA-Gb3相互作用增强了细菌与膜的附着(1.5至8倍)。此外,将LecA包被的珠子完全摄取到Gb3功能化囊泡中所需的能量显著减少(最多减少80%)。这种定量方法突出表明,凝集素-糖脂相互作用提供了足够的力和能量来驱动细菌的附着和摄取。