Suppr超能文献

弹丸冲击诱导的单组分聚合物纳米复合薄膜变形

Projectile Impact Shock-Induced Deformation of One-Component Polymer Nanocomposite Thin Films.

作者信息

Hyon Jinho, Gonzales Manny, Streit Jason K, Fried Omri, Lawal Olawale, Jiao Yang, Drummy Lawrence F, Thomas Edwin L, Vaia Richard A

机构信息

Department of Materials Science & NanoEngineering, Rice University, Houston, Texas 77005, United States.

Department of Materials Science and Engineering, Texas A&M University, College Station, Texas 77840, United States.

出版信息

ACS Nano. 2021 Feb 23;15(2):2439-2446. doi: 10.1021/acsnano.0c06146. Epub 2021 Jan 27.

Abstract

Matrix-free assemblies of polymer-grafted nanoparticles (PGNs) enable mechanically robust materials for a variety of structural, electronic, and optical applications. Recent quasi-static mechanical studies have identified the key parameters that enhance canopy entanglement and promote plasticity of the PGNs below . Here we experimentally explore the high-strain-rate shock impact behavior of polystyrene grafted NPs and compare their energy absorption capabilities to that of homopolystyrene for film thicknesses ranging from 75 to 550 nm and for impact velocities from 350 to 800 m/s. Modeling reveals that the initial shock compression results in a rapid temperature increase at the impact site. The uniformity of this heating is consistent with observations of greater kinetic energy absorption per mass () of thinner films due to extensive visco-plastic deformation of molten film around the penetration site. Adiabatic heating is insufficient to raise the temperature at the exit surface of the thickest films resulting in increased strain localization at the impact periphery with less melt elongation. The extent and distribution of entanglements also influence . Structurally, each NP acts as a giant cross-link node, coupling surrounding nodes the number of canopy chains per NP and the nature and number of entanglements between canopies anchored to different NPs. Load sharing this dual network, along with geometrical factors such as film thickness, lead to extreme arising from the sequence of instantaneous adiabatic shock heating followed by visco-plastic drawing of the film by the projectile. These observations elucidate the critical factors necessary to create robust polymer-nanocomposite multifunctional films.

摘要

聚合物接枝纳米颗粒(PGN)的无基质组装体能够制造出适用于各种结构、电子和光学应用的机械坚固材料。最近的准静态力学研究已经确定了增强冠层缠结并促进低于该温度的PGN可塑性的关键参数。在此,我们通过实验探索了聚苯乙烯接枝纳米颗粒的高应变率冲击行为,并将其能量吸收能力与均聚苯乙烯在75至550纳米的膜厚度以及350至800米/秒的冲击速度下的能量吸收能力进行了比较。建模显示,初始冲击压缩会导致冲击部位温度迅速升高。这种加热的均匀性与较薄膜每质量()吸收更多动能的观察结果一致,这是由于穿透部位周围熔融膜的广泛粘塑性变形所致。绝热加热不足以提高最厚膜出口表面的温度,导致冲击周边的应变局部化增加,熔体伸长减少。缠结的程度和分布也会影响。在结构上,每个纳米颗粒都充当一个巨大的交联节点,连接周围的节点——每个纳米颗粒的冠层链数量以及锚定在不同纳米颗粒上的冠层之间缠结的性质和数量。这种双网络的负载分担,以及诸如膜厚度等几何因素,导致了极端情况的出现,这是由瞬时绝热冲击加热,随后弹丸对膜进行粘塑性拉伸的过程所引起的。这些观察结果阐明了制造坚固的聚合物-纳米复合材料多功能薄膜所需的关键因素。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验