Suppr超能文献

不同荷电状态下采用富镍阴极的圆柱形21700型电池的高温存储劣化机制

High-Temperature Storage Deterioration Mechanism of Cylindrical 21700-Type Batteries Using Ni-Rich Cathodes under Different SOCs.

作者信息

Hu Daozhong, Zhang Qiyu, Tian Jun, Chen Lai, Li Ning, Su Yuefeng, Bao Liying, Lu Yun, Cao Duanyun, Yan Kang, Chen Shi, Wu Feng

机构信息

School of Materials Science and Engineering, Beijing Key Laboratory of Environmental Science and Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China.

Department of Testing Technology, China North Vehicle Research Institute, Beijing 100072, China.

出版信息

ACS Appl Mater Interfaces. 2021 Feb 10;13(5):6286-6297. doi: 10.1021/acsami.0c20835. Epub 2021 Jan 27.

Abstract

The safety and energy density of lithium-ion batteries (LIBs) are important concerns. The use of high-capacity cathode materials, such as Ni-rich cathodes, can greatly improve the energy density of LIBs, but it also brings some safety hazards. Cylindrical 21700-type batteries using Ni-rich cathodes were employed here to investigate their high-temperature storage deterioration mechanism under different states of charge (SOCs). Electrolyte decomposition was identified as the main problem. It can be worsened by elevated storage temperatures and battery SOCs, with the latter having a more significant influence. Specifically, the decomposition of the LiPF solute and the carbonate solvent will induce hydrofluoric acid (HF) formation and solid-electrolyte interphase (SEI) film regeneration, respectively. HF erosion will aggravate the dissolution of transition metal ions and structural degradation of cathode materials, while the destruction/regeneration of SEI films will consume active lithium and hinder Li diffusion at the anode side. Besides, the self-discharge behavior will also enlarge the graphite layer spacing, thus decreasing the graphitization degree of graphite anodes and causing anode failure. These findings will aid in the development of strategies for improving the safety of LIBs with high energy density.

摘要

锂离子电池(LIBs)的安全性和能量密度是重要的关注点。使用高容量阴极材料,如富镍阴极,可极大提高锂离子电池的能量密度,但这也带来了一些安全隐患。这里采用使用富镍阴极的圆柱形21700型电池来研究其在不同充电状态(SOCs)下的高温存储劣化机制。电解质分解被确定为主要问题。存储温度升高和电池SOCs会使其恶化,其中后者的影响更为显著。具体而言,LiPF溶质和碳酸盐溶剂的分解将分别诱导氢氟酸(HF)形成和固体电解质界面(SEI)膜再生。HF侵蚀会加剧过渡金属离子的溶解和阴极材料的结构退化,而SEI膜的破坏/再生将消耗活性锂并阻碍阳极侧的锂扩散。此外,自放电行为还会扩大石墨层间距,从而降低石墨阳极的石墨化程度并导致阳极失效。这些发现将有助于制定提高高能量密度锂离子电池安全性的策略。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验