Xu Hanying, Li Zhanping, Liu Tongchao, Han Ce, Guo Chong, Zhao He, Li Qin, Lu Jun, Amine Khalil, Qiu Xinping
Key Laboratory of Organic Optoelectronics and Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing, 100084, China.
Analysis Center, Tsinghua University, Beijing, 100084, China.
Angew Chem Int Ed Engl. 2022 Jul 25;61(30):e202202894. doi: 10.1002/anie.202202894. Epub 2022 May 26.
Transition metal (e.g. Ni) ions dissolved from layered-structured Ni-rich cathodes can migrate to the anode side and accelerate the failure of lithium-ion batteries. The investigations of the impact and distribution of Ni species on the solid electrolyte interphase (SEI) on the anode are crucial to understand the failure mechanism. Herein, we used time-of-flight secondary ion mass spectroscopy (TOF-SIMS) coupled with multivariate curve resolution (MCR) analysis to intuitively characterize the distribution of Ni species in the SEI. We find that the SEI on the graphite electrode using an EC-based electrolyte exhibits a multi-stratum structure. During accelerated aging of the LiNi Co Mn O /graphite full cell, the dissolution of Ni aggravates significantly upon cycling. A strong correlation between the dissolved-Ni and organic species in the SEI on graphite is illustrated. The ion-exchange reaction between Ni and Li ions in the SEI is demonstrated to be the main reason for the increase of SEI resistivity.
从层状结构的富镍阴极溶解出来的过渡金属(如镍)离子会迁移到阳极一侧,并加速锂离子电池的失效。研究镍物种在阳极固体电解质界面(SEI)上的影响和分布对于理解失效机制至关重要。在此,我们使用飞行时间二次离子质谱(TOF-SIMS)结合多元曲线分辨(MCR)分析来直观地表征SEI中镍物种的分布。我们发现,使用基于碳酸乙烯酯(EC)的电解质时,石墨电极上的SEI呈现出多层结构。在LiNiCoMnO/石墨全电池的加速老化过程中,镍的溶解在循环过程中显著加剧。结果表明,石墨上SEI中的溶解镍与有机物种之间存在很强的相关性。SEI中镍离子与锂离子之间的离子交换反应被证明是SEI电阻率增加的主要原因。