Signal Transduction Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, 111 T. W. Alexander Drive, Research Triangle Park, NC, 27709, USA.
Department of Biochemistry and Molecular Biology, Baylor College of Medicine, 1 Baylor Plaza, Houston, Texas, 77030, USA.
Nat Commun. 2021 Jan 27;12(1):636. doi: 10.1038/s41467-020-20608-z.
Nsp15, a uridine specific endoribonuclease conserved across coronaviruses, processes viral RNA to evade detection by host defense systems. Crystal structures of Nsp15 from different coronaviruses have shown a common hexameric assembly, yet how the enzyme recognizes and processes RNA remains poorly understood. Here we report a series of cryo-EM reconstructions of SARS-CoV-2 Nsp15, in both apo and UTP-bound states. The cryo-EM reconstructions, combined with biochemistry, mass spectrometry, and molecular dynamics, expose molecular details of how critical active site residues recognize uridine and facilitate catalysis of the phosphodiester bond. Mass spectrometry revealed the accumulation of cyclic phosphate cleavage products, while analysis of the apo and UTP-bound datasets revealed conformational dynamics not observed by crystal structures that are likely important to facilitate substrate recognition and regulate nuclease activity. Collectively, these findings advance understanding of how Nsp15 processes viral RNA and provide a structural framework for the development of new therapeutics.
Nsp15 是一种在冠状病毒中保守存在的尿嘧啶特异性内切核糖核酸酶,它能使病毒 RNA 发生加工,从而逃避宿主防御系统的检测。来自不同冠状病毒的 Nsp15 的晶体结构显示出一种常见的六聚体组装,但该酶如何识别和加工 RNA 仍知之甚少。在这里,我们报告了一系列 SARS-CoV-2 Nsp15 的冷冻电镜重建,包括apo 和 UTP 结合状态。冷冻电镜重建结果,结合生物化学、质谱和分子动力学,揭示了关键活性位点残基识别尿嘧啶并促进磷酸二酯键催化的分子细节。质谱揭示了环状磷酸酯裂解产物的积累,而对 apo 和 UTP 结合数据集的分析揭示了晶体结构中未观察到的构象动力学,这可能对促进底物识别和调节核酸酶活性很重要。总的来说,这些发现推进了对 Nsp15 加工病毒 RNA 的理解,并为开发新的治疗方法提供了结构框架。