Neurokyma, 35700, Rennes, France.
L@bISEN-Yncréa Ouest, ISEN, Brest, France.
Sci Data. 2021 Jan 27;8(1):32. doi: 10.1038/s41597-021-00821-1.
This work provides the community with high-density Electroencephalography (HD-EEG, 256 channels) datasets collected during task-free and task-related paradigms. It includes forty-three healthy participants performing visual naming and spelling tasks, visual and auditory naming tasks and a visual working memory task in addition to resting state. The HD-EEG data are furnished in the Brain Imaging Data Structure (BIDS) format. These datasets can be used to (i) track brain networks dynamics and their rapid reconfigurations at sub-second time scale in different conditions, (naming/spelling/rest) and modalities, (auditory/visual) and compare them to each other, (ii) validate several parameters involved in the methods used to estimate cortical brain networks through scalp EEG, such as the open question of optimal number of channels and number of regions of interest and (iii) allow the reproducibility of results obtained so far using HD-EEG. We hope that delivering these datasets will lead to the development of new methods that can be used to estimate brain cortical networks and to better understand the general functioning of the brain during rest and task. Data are freely available from https://openneuro.org .
本工作为社区提供了在任务态和任务相关范式下采集的高密度脑电图 (HD-EEG,256 通道) 数据集。它包括 43 名健康参与者执行视觉命名和拼写任务、视觉和听觉命名任务以及视觉工作记忆任务,此外还有静息状态。HD-EEG 数据采用脑成像数据结构 (BIDS) 格式提供。这些数据集可用于:(i) 在不同条件(命名/拼写/休息)和模态(听觉/视觉)下跟踪脑网络动态及其在亚秒级的快速重新配置,并相互比较;(ii) 验证通过头皮 EEG 估计皮质脑网络时涉及的几个参数,例如最佳通道数量和感兴趣区域数量的开放性问题;(iii) 实现迄今为止使用 HD-EEG 获得的结果的可重复性。我们希望提供这些数据集将有助于开发新的方法,用于估计大脑皮质网络,并更好地理解大脑在休息和任务期间的一般功能。数据可在 https://openneuro.org 上免费获取。