Suppr超能文献

检测静息和任务状态下的模块化脑状态。

Detecting modular brain states in rest and task.

作者信息

Kabbara Aya, Khalil Mohamad, O'Neill Georges, Dujardin Kathy, El Traboulsi Youssof, Wendling Fabrice, Hassan Mahmoud

机构信息

Azm Center for Research in Biotechnology and Its Applications, EDST, Lebanese University, Beirut, Lebanon.

Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University Park, Nottingham, United Kingdom.

出版信息

Netw Neurosci. 2019 Jul 1;3(3):878-901. doi: 10.1162/netn_a_00090. eCollection 2019.

Abstract

The human brain is a dynamic networked system that continually reconfigures its functional connectivity patterns over time. Thus, developing approaches able to adequately detect fast brain dynamics is critical. Of particular interest are the methods that analyze the modular structure of brain networks, that is, the presence of clusters of regions that are densely interconnected. In this paper, we propose a novel framework to identify fast modular states that dynamically fluctuate over time during rest and task. We started by demonstrating the feasibility and relevance of this framework using simulated data. Compared with other methods, our algorithm was able to identify the simulated networks with high temporal and spatial accuracies. We further applied the proposed framework on MEG data recorded during a finger movement task, identifying modular states linking somatosensory and primary motor regions. The algorithm was also performed on dense-EEG data recorded during a picture naming task, revealing the subsecond transition between several modular states that relate to visual processing, semantic processing, and language. Next, we tested our method on a dataset of resting-state dense-EEG signals recorded from 124 patients with Parkinson's disease. Results disclosed brain modular states that differentiate cognitively intact patients, patients with moderate cognitive deficits, and patients with severe cognitive deficits. Our new approach complements classical methods, offering a new way to track the brain modular states, in healthy subjects and patients, on an adequate task-specific timescale.

摘要

人类大脑是一个动态的网络系统,其功能连接模式会随着时间不断重新配置。因此,开发能够充分检测快速大脑动态的方法至关重要。特别令人感兴趣的是那些分析大脑网络模块化结构的方法,即存在紧密互连的区域集群。在本文中,我们提出了一个新颖的框架,用于识别在休息和任务期间随时间动态波动的快速模块化状态。我们首先通过使用模拟数据证明了该框架的可行性和相关性。与其他方法相比,我们的算法能够以高时间和空间精度识别模拟网络。我们进一步将所提出的框架应用于在手指运动任务期间记录的脑磁图(MEG)数据,识别出连接体感和初级运动区域的模块化状态。该算法还应用于在图片命名任务期间记录的高密度脑电图(EEG)数据,揭示了与视觉处理、语义处理和语言相关的几个模块化状态之间的亚秒级转换。接下来,我们在从124名帕金森病患者记录的静息状态高密度EEG信号数据集上测试了我们的方法。结果揭示了区分认知完好患者、中度认知缺陷患者和重度认知缺陷患者的大脑模块化状态。我们的新方法补充了经典方法,为在健康受试者和患者中,在适当的特定任务时间尺度上跟踪大脑模块化状态提供了一种新方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ed4c/6663471/7f4de8bcf34a/netn-03-878-g001.jpg

相似文献

1
Detecting modular brain states in rest and task.
Netw Neurosci. 2019 Jul 1;3(3):878-901. doi: 10.1162/netn_a_00090. eCollection 2019.
2
Measurement of dynamic task related functional networks using MEG.
Neuroimage. 2017 Feb 1;146:667-678. doi: 10.1016/j.neuroimage.2016.08.061. Epub 2016 Sep 14.
3
Discovering dynamic task-modulated functional networks with specific spectral modes using MEG.
Neuroimage. 2020 Sep;218:116924. doi: 10.1016/j.neuroimage.2020.116924. Epub 2020 May 20.
5
Functional connectivity disruptions correlate with cognitive phenotypes in Parkinson's disease.
Neuroimage Clin. 2017 Mar 6;14:591-601. doi: 10.1016/j.nicl.2017.03.002. eCollection 2017.
6
The dynamic modular fingerprints of the human brain at rest.
Neuroimage. 2021 Feb 15;227:117674. doi: 10.1016/j.neuroimage.2020.117674. Epub 2020 Dec 29.
7
Principal States of Dynamic Functional Connectivity Reveal the Link Between Resting-State and Task-State Brain: An fMRI Study.
Int J Neural Syst. 2018 Sep;28(7):1850002. doi: 10.1142/S0129065718500028. Epub 2018 Jan 25.
8
Group comparison of spatiotemporal dynamics of intrinsic networks in Parkinson's disease.
Brain. 2015 Sep;138(Pt 9):2672-86. doi: 10.1093/brain/awv189. Epub 2015 Jul 14.
9
Task-dependent reorganization of functional connectivity networks during visual semantic decision making.
Brain Behav. 2014;4(6):877-85. doi: 10.1002/brb3.286. Epub 2014 Sep 23.
10
EEG Multiscale Complexity in Schizophrenia During Picture Naming.
Front Physiol. 2018 Sep 7;9:1213. doi: 10.3389/fphys.2018.01213. eCollection 2018.

引用本文的文献

1
Walking on the Edge: Brain Connectivity Changes in Response to Virtual Height Challenges.
Eur J Neurosci. 2025 May;61(9):e70131. doi: 10.1111/ejn.70131.
2
Static and dynamic functional connectome reveals reconfiguration profiles of whole-brain network across cognitive states.
Netw Neurosci. 2023 Oct 1;7(3):1034-1050. doi: 10.1162/netn_a_00314. eCollection 2023.
4
A mixed-modeling framework for whole-brain dynamic network analysis.
Netw Neurosci. 2022 Jun 1;6(2):591-613. doi: 10.1162/netn_a_00238. eCollection 2022 Jun.
5
HD-EEG for tracking sub-second brain dynamics during cognitive tasks.
Sci Data. 2021 Jan 27;8(1):32. doi: 10.1038/s41597-021-00821-1.
6
Reproducibility of graph measures at the subject level using resting-state fMRI.
Brain Behav. 2020 Aug;10(8):2336-2351. doi: 10.1002/brb3.1705. Epub 2020 Jul 2.

本文引用的文献

1
A comparison between scalp- and source-reconstructed EEG networks.
Sci Rep. 2018 Aug 16;8(1):12269. doi: 10.1038/s41598-018-30869-w.
2
Consensus clustering approach to group brain connectivity matrices.
Netw Neurosci. 2017 Oct 1;1(3):242-253. doi: 10.1162/NETN_a_00017.
3
Reduced integration and improved segregation of functional brain networks in Alzheimer's disease.
J Neural Eng. 2018 Apr;15(2):026023. doi: 10.1088/1741-2552/aaaa76.
4
Dynamics of large-scale electrophysiological networks: A technical review.
Neuroimage. 2018 Oct 15;180(Pt B):559-576. doi: 10.1016/j.neuroimage.2017.10.003. Epub 2017 Oct 4.
5
Discovering dynamic brain networks from big data in rest and task.
Neuroimage. 2018 Oct 15;180(Pt B):646-656. doi: 10.1016/j.neuroimage.2017.06.077. Epub 2017 Jun 29.
6
The dynamic functional core network of the human brain at rest.
Sci Rep. 2017 Jun 7;7(1):2936. doi: 10.1038/s41598-017-03420-6.
7
Functional connectivity disruptions correlate with cognitive phenotypes in Parkinson's disease.
Neuroimage Clin. 2017 Mar 6;14:591-601. doi: 10.1016/j.nicl.2017.03.002. eCollection 2017.
8
EEG Signatures of Dynamic Functional Network Connectivity States.
Brain Topogr. 2018 Jan;31(1):101-116. doi: 10.1007/s10548-017-0546-2. Epub 2017 Feb 22.
10
A Topological Criterion for Filtering Information in Complex Brain Networks.
PLoS Comput Biol. 2017 Jan 11;13(1):e1005305. doi: 10.1371/journal.pcbi.1005305. eCollection 2017 Jan.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验