Suppr超能文献

利用……从豆渣发酵中生产β-葡萄糖苷酶

Production of -glucosidase from okara fermentation using .

作者信息

Su Min, Hu Yang, Cui Yang, Wang Yuhua, Yu Hansong, Liu Junmei, Dai Weichang, Piao Chunhong

机构信息

College of Food Science and Engineering, Jilin Agricultural University, Changchun, 130118 Jilin Province China.

出版信息

J Food Sci Technol. 2021 Jan;58(1):366-376. doi: 10.1007/s13197-020-04550-y. Epub 2020 Jul 8.

Abstract

The effective utilization of okara (soybean residue) has become a considerable challenge in recent years. In this paper, the potential advantages of -glucosidase production from okara fermented by were evaluated and the properties of the -glucosidase were also characterized. The results showed that okara can significantly induce the production of -glucosidase from . The -glucosidase activity was up to 4.5 U/mg under optimized fermentation conditions. The optimal parameters were as follows: fermentation temperature 35 °C, cultivation time 98 h, inoculum concentration 10%, and 30 g/L of okara. After two steps of purification using ammonium sulfate precipitation and Sephadex G-75 column chromatography, the activity of -glucosidase was 71.4 U/mg. The native enzyme was an approximately 66 kDa dimer consisting of two different subunits (22 and 44 kDa). The kinetic parameters of the -glucosidase, using NPG as substrate, were 8.34 μmol min mg and 7.42 mM. The -glucosidase showed high thermostability and acid-alkali tolerance as well as low inhibition by DMSO (10-50%). In conclusion, this study supports the notion that okara fermentation by could be a useful process to produce -.

摘要

近年来,豆渣(大豆残渣)的有效利用已成为一项重大挑战。本文评估了由[具体发酵菌]发酵豆渣生产β-葡萄糖苷酶的潜在优势,并对β-葡萄糖苷酶的性质进行了表征。结果表明,豆渣能显著诱导[具体发酵菌]产生β-葡萄糖苷酶。在优化的发酵条件下,β-葡萄糖苷酶活性高达4.5 U/mg。最佳参数如下:发酵温度35℃,培养时间98小时,接种浓度10%,豆渣浓度30 g/L。经硫酸铵沉淀和Sephadex G-75柱层析两步纯化后,β-葡萄糖苷酶活性为71.4 U/mg。天然酶是一种约66 kDa的二聚体,由两个不同的亚基(22 kDa和44 kDa)组成。以NPG为底物时,β-葡萄糖苷酶的动力学参数为Vmax 8.34 μmol min mg和Km 7.42 mM。β-葡萄糖苷酶表现出高耐热性和酸碱耐受性,以及低DMSO(10 - 50%)抑制作用。总之,本研究支持这样一种观点,即由[具体发酵菌]发酵豆渣可能是生产β-葡萄糖苷酶的有用工艺。

相似文献

1
Production of -glucosidase from okara fermentation using .
J Food Sci Technol. 2021 Jan;58(1):366-376. doi: 10.1007/s13197-020-04550-y. Epub 2020 Jul 8.
2
Optimization of fermentation for γ-aminobutyric acid (GABA) production by yeast Kluyveromyces marxianus C21 in okara (soybean residue).
Bioprocess Biosyst Eng. 2022 Jul;45(7):1111-1123. doi: 10.1007/s00449-022-02702-2. Epub 2022 Feb 18.
5
Production, purification, and determination of the biochemical properties of β-glucosidase in via solid substrate fermentation.
Z Naturforsch C J Biosci. 2024 Apr 23;80(1-2):9-19. doi: 10.1515/znc-2024-0026. Print 2025 Jan 29.
6
Ethanol production from sunflower meal biomass by simultaneous saccharification and fermentation (SSF) with Kluyveromyces marxianus ATCC 36907.
Bioprocess Biosyst Eng. 2014 Nov;37(11):2235-42. doi: 10.1007/s00449-014-1201-x. Epub 2014 May 3.
8
Characteristics of lipoxygenase-based and lipoxygenase-deficient soy yogurt with modified okara.
Food Sci Biotechnol. 2021 Nov 26;30(13):1675-1684. doi: 10.1007/s10068-021-01003-w. eCollection 2021 Dec.
9
The production of ethanol from lignocellulosic biomass by Kluyveromyces marxianus CICC 1727-5 and Spathaspora passalidarum ATCC MYA-4345.
Appl Microbiol Biotechnol. 2019 Mar;103(6):2845-2855. doi: 10.1007/s00253-019-09625-1. Epub 2019 Jan 31.
10
Improved xylose fermentation of Kluyveromyces marxianus at elevated temperature through construction of a xylose isomerase pathway.
J Ind Microbiol Biotechnol. 2013 Aug;40(8):841-54. doi: 10.1007/s10295-013-1282-6. Epub 2013 May 9.

引用本文的文献

1
Application of Immobilized β-Glucosidase from in the Hydrolysis of Delignified Sugarcane Bagasse.
Indian J Microbiol. 2024 Jun;64(2):650-670. doi: 10.1007/s12088-024-01223-8. Epub 2024 Mar 5.
3
Bioprospecting as a Robust Host for Industrial Biotechnology.
Front Bioeng Biotechnol. 2022 Apr 20;10:851768. doi: 10.3389/fbioe.2022.851768. eCollection 2022.
4
Meiosis-Based Laboratory Evolution of the Thermal Tolerance in .
Front Bioeng Biotechnol. 2022 Jan 11;9:799756. doi: 10.3389/fbioe.2021.799756. eCollection 2021.

本文引用的文献

1
Characterization of an extracellular β-glucosidase from Dekkera bruxellensis for resveratrol production.
J Food Drug Anal. 2018 Jan;26(1):163-171. doi: 10.1016/j.jfda.2016.12.016. Epub 2017 Feb 21.
2
Characterization of sp. MBT213 Isolated from Raw Milk and Its Ability to Convert Ginsenoside Rb into Ginsenoside Rd from .
Korean J Food Sci Anim Resour. 2017;37(5):735-742. doi: 10.5851/kosfa.2017.37.5.735. Epub 2017 Oct 31.
3
Erythritol production by Yarrowia lipolytica from okara pretreated with the in-house enzyme pools of fungi.
Bioresour Technol. 2017 Nov;244(Pt 1):1089-1095. doi: 10.1016/j.biortech.2017.08.014. Epub 2017 Aug 22.
4
Purification and characterization of an extracellular β-glucosidase from .
FEBS Open Bio. 2016 Oct 6;6(11):1067-1077. doi: 10.1002/2211-5463.12108. eCollection 2016 Nov.
6
7
Extraction, partial purification and determination of some biochemical properties of β-glucosidase from Tea Leaves (Camellia sinensis L.).
J Food Sci Technol. 2015 Dec;52(12):8322-8. doi: 10.1007/s13197-015-1915-z. Epub 2015 Jun 14.
8
Purification and enzymatic characterization of a novel β-1,6-glucosidase from Aspergillus oryzae.
J Biosci Bioeng. 2016 Mar;121(3):259-64. doi: 10.1016/j.jbiosc.2015.07.011. Epub 2015 Aug 29.
9
Expression optimization and biochemical properties of two glycosyl hydrolase family 3 beta-glucosidases.
J Biotechnol. 2015 Jul 20;206:79-88. doi: 10.1016/j.jbiotec.2015.04.016. Epub 2015 Apr 30.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验