Suppr超能文献

基于双向长短期记忆的听觉脑干反应特征波形自动识别

Automatic Recognition of Auditory Brainstem Response Characteristic Waveform Based on Bidirectional Long Short-Term Memory.

作者信息

Chen Cheng, Zhan Li, Pan Xiaoxin, Wang Zhiliang, Guo Xiaoyu, Qin Handai, Xiong Fen, Shi Wei, Shi Min, Ji Fei, Wang Qiuju, Yu Ning, Xiao Ruoxiu

机构信息

School of Computer and Communication Engineering, University of Science & Technology Beijing, Beijing, China.

College of Otolaryngology Head and Neck Surgery, National Clinical Research Center for Otolaryngologic Diseases, Key Lab of Hearing Science, Ministry of Education, Beijing Key Lab of Hearing Impairment for Prevention and Treatment, Chinese PLA General Hospital, Beijing, China.

出版信息

Front Med (Lausanne). 2021 Jan 11;7:613708. doi: 10.3389/fmed.2020.613708. eCollection 2020.

Abstract

Auditory brainstem response (ABR) testing is an invasive electrophysiological auditory function test. Its waveforms and threshold can reflect auditory functional changes in the auditory centers in the brainstem and are widely used in the clinic to diagnose dysfunction in hearing. However, identifying its waveforms and threshold is mainly dependent on manual recognition by experimental persons, which could be primarily influenced by individual experiences. This is also a heavy job in clinical practice. In this work, human ABR was recorded. First, binarization is created to mark 1,024 sampling points accordingly. The selected characteristic area of ABR data is 0-8 ms. The marking area is enlarged to expand feature information and reduce marking error. Second, a bidirectional long short-term memory (BiLSTM) network structure is established to improve relevance of sampling points, and an ABR sampling point classifier is obtained by training. Finally, mark points are obtained through thresholding. The specific structure, related parameters, recognition effect, and noise resistance of the network were explored in 614 sets of ABR clinical data. The results show that the average detection time for each data was 0.05 s, and recognition accuracy reached 92.91%. The study proposed an automatic recognition of ABR waveforms by using the BiLSTM-based machine learning technique. The results demonstrated that the proposed methods could reduce recording time and help doctors in making diagnosis, suggesting that the proposed method has the potential to be used in the clinic in the future.

摘要

听性脑干反应(ABR)测试是一种侵入性的电生理听觉功能测试。其波形和阈值能够反映脑干听觉中枢的听觉功能变化,在临床上被广泛用于诊断听力功能障碍。然而,识别其波形和阈值主要依赖实验人员的人工识别,这可能主要受个人经验影响。这在临床实践中也是一项繁重的工作。在这项工作中,记录了人类ABR。首先,进行二值化处理,相应地标记1024个采样点。ABR数据的选定特征区域为0 - 8毫秒。扩大标记区域以扩展特征信息并减少标记误差。其次,建立双向长短期记忆(BiLSTM)网络结构以提高采样点的相关性,并通过训练获得ABR采样点分类器。最后,通过阈值处理获得标记点。在614组ABR临床数据中探索了该网络的具体结构、相关参数、识别效果和抗噪声能力。结果表明,每组数据的平均检测时间为0.05秒,识别准确率达到92.91%。该研究提出了一种基于BiLSTM机器学习技术的ABR波形自动识别方法。结果表明,所提出的方法可以减少记录时间并帮助医生进行诊断,表明该方法未来有可能在临床上得到应用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/34ad/7829202/99041292d6d0/fmed-07-613708-g0001.jpg

相似文献

1
Automatic Recognition of Auditory Brainstem Response Characteristic Waveform Based on Bidirectional Long Short-Term Memory.
Front Med (Lausanne). 2021 Jan 11;7:613708. doi: 10.3389/fmed.2020.613708. eCollection 2020.
2
Comparison of machine learning models to classify Auditory Brainstem Responses recorded from children with Auditory Processing Disorder.
Comput Methods Programs Biomed. 2021 Mar;200:105942. doi: 10.1016/j.cmpb.2021.105942. Epub 2021 Jan 17.
3
Quantitative Threshold Determination of Auditory Brainstem Responses in Mouse Models.
Int J Mol Sci. 2023 Jul 13;24(14):11393. doi: 10.3390/ijms241411393.
4
The Effects of Random Stimulation Rate on Measurements of Auditory Brainstem Response.
Front Hum Neurosci. 2020 Mar 20;14:78. doi: 10.3389/fnhum.2020.00078. eCollection 2020.
5
A simple algorithm for objective threshold determination of auditory brainstem responses.
Hear Res. 2019 Sep 15;381:107782. doi: 10.1016/j.heares.2019.107782. Epub 2019 Aug 8.
6
Objective auditory brainstem response classification using machine learning.
Int J Audiol. 2019 Apr;58(4):224-230. doi: 10.1080/14992027.2018.1551633. Epub 2019 Jan 21.
9
Automated wave labelling of the auditory brainstem response using machine learning.
Int J Audiol. 2025 Jul;64(7):766-771. doi: 10.1080/14992027.2024.2404537. Epub 2024 Oct 3.
10
Speech-ABR in contralateral noise: A potential tool to evaluate rostral part of the auditory efferent system.
Med Hypotheses. 2019 Nov;132:109355. doi: 10.1016/j.mehy.2019.109355. Epub 2019 Aug 8.

引用本文的文献

1
Rapid hearing threshold assessment with modified auditory brainstem response protocols in dogs.
Front Vet Sci. 2024 Mar 6;11:1358410. doi: 10.3389/fvets.2024.1358410. eCollection 2024.

本文引用的文献

1
Diagnosis and prediction of prognosis for Bickerstaff's brainstem encephalitis using auditory brainstem response: a case report.
Acute Med Surg. 2020 Jun 2;7(1):e517. doi: 10.1002/ams2.517. eCollection 2020 Jan-Dec.
2
Automated extraction of auditory brainstem response latencies and amplitudes by means of non-linear curve registration.
Comput Methods Programs Biomed. 2020 Nov;196:105595. doi: 10.1016/j.cmpb.2020.105595. Epub 2020 Jun 10.
3
Comparing Auditory Brainstem Responses evoked by Click and Sweep-Tone in Normal-Hearing Adults.
Annu Int Conf IEEE Eng Med Biol Soc. 2019 Jul;2019:5237-5240. doi: 10.1109/EMBC.2019.8856452.
5
Decoding of selective attention to continuous speech from the human auditory brainstem response.
Neuroimage. 2019 Oct 15;200:1-11. doi: 10.1016/j.neuroimage.2019.06.029. Epub 2019 Jun 15.
6
Objective auditory brainstem response classification using machine learning.
Int J Audiol. 2019 Apr;58(4):224-230. doi: 10.1080/14992027.2018.1551633. Epub 2019 Jan 21.
7
Accuracy of averaged auditory brainstem response amplitude and latency estimates.
Int J Audiol. 2018 May;57(5):345-353. doi: 10.1080/14992027.2017.1381770. Epub 2017 Oct 3.
9
Combining wavelet analysis and Bayesian networks for the classification of auditory brainstem response.
IEEE Trans Inf Technol Biomed. 2006 Jul;10(3):458-67. doi: 10.1109/titb.2005.863865.
10
Automated analysis of the auditory brainstem response using derivative estimation wavelets.
Audiol Neurootol. 2005 Jan-Feb;10(1):6-21. doi: 10.1159/000081544. Epub 2004 Oct 14.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验