Department of Biology, Harvey Mudd College, 1250 N. Dartmouth Ave., Claremont, CA 91711 USA.
Department of Invertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington, DC 20560, USA.
Syst Biol. 2021 Jun 16;70(4):635-647. doi: 10.1093/sysbio/syaa103.
Anthozoan cnidarians (corals and sea anemones) include some of the world's most important foundation species, capable of building massive reef complexes that support entire ecosystems. Although previous molecular phylogenetic analyses have revealed widespread homoplasy of the morphological characters traditionally used to define orders and families of anthozoans, analyses using mitochondrial genes or rDNA have failed to resolve many key nodes in the phylogeny. With a fully resolved, time-calibrated phylogeny for 234 species constructed from hundreds of ultraconserved elements and exon loci, we explore the evolutionary origins of the major clades of Anthozoa and some of their salient morphological features. The phylogeny supports reciprocally monophyletic Hexacorallia and Octocorallia, with Ceriantharia as the earliest diverging hexacorals; two reciprocally monophyletic clades of Octocorallia; and monophyly of all hexacoral orders with the exception of the enigmatic sea anemone Relicanthus daphneae. Divergence dating analyses place Anthozoa in the Cryogenian to Tonian periods (648-894 Ma), older than has been suggested by previous studies. Ancestral state reconstructions indicate that the ancestral anthozoan was a solitary polyp that had bilateral symmetry and lacked a skeleton. Colonial growth forms and the ability to precipitate calcium carbonate evolved in the Ediacaran (578 Ma) and Cambrian (503 Ma) respectively; these hallmarks of reef-building species have subsequently arisen multiple times independently in different orders. Anthozoans formed associations with photosymbionts by the Devonian (383 Ma), and photosymbioses have been gained and lost repeatedly in all orders. Together, these results have profound implications for the interpretation of the Precambrian environment and the early evolution of metazoans.[Bilateral symmetry; coloniality; coral; early metazoans; exon capture; Hexacorallia; Octocorallia photosymbiosis; sea anemone; ultraconserved elements.].
水螅虫动物门(珊瑚和海葵)包括一些世界上最重要的基础物种,它们能够建造巨大的珊瑚礁复合体,支撑整个生态系统。尽管以前的分子系统发育分析揭示了传统上用于定义珊瑚纲动物的形态特征的广泛同形性,但使用线粒体基因或 rDNA 的分析未能解决系统发育中许多关键节点的问题。通过从数百个超保守元件和外显子基因座构建的 234 个物种的完全解决、时间校准的系统发育,我们探讨了 Anthozoa 主要分支的进化起源及其一些显著的形态特征。该系统发育支持Hexacorallia 和 Octocorallia 的互惠单系性,Ceriantharia 是最早分化的六放珊瑚;两个互惠单系的 Octocorallia 分支;除了神秘的海葵 Relicanthus daphneae 外,所有六放珊瑚纲动物的单系性;以及除了神秘的海葵 Relicanthus daphneae 外,所有六放珊瑚纲动物的单系性。分化时间分析将 Anthozoa 置于 Cryogenian 到 Tonian 时期(648-894 Ma),比以前的研究表明的要早。祖先状态重建表明,祖先的珊瑚是一种具有双侧对称性且没有骨骼的独居息肉。群体生长形式和沉淀碳酸钙的能力分别在埃迪卡拉纪(578 Ma)和寒武纪(503 Ma)进化;这些造礁物种的标志随后在不同的纲中多次独立出现。珊瑚纲动物在泥盆纪(383 Ma)与光合共生体形成了共生关系,并且在所有的纲中,光合共生关系已经被多次获得和失去。总的来说,这些结果对解释前寒武纪环境和后生动物的早期进化具有深远的意义。[双侧对称性;群体生活;珊瑚;早期后生动物;外显子捕获;Hexacorallia;Octocorallia 共生;海葵;超保守元件。]