Suppr超能文献

通过浮栅工程化铟镓锌氧化物(IGZO)突触晶体管实现用于神经形态计算的高性能突触阵列。

High-Performance Synapse Arrays for Neuromorphic Computing via Floating Gate-Engineered IGZO Synaptic Transistors.

作者信息

Park Junhyeong, Yun Yumin, Bae Sunyeol, Jang Yuseong, Shin Seungyoon, Lee Soo-Yeon

机构信息

Department of Electrical and Computer Engineering, and Inter-university Semiconductor Research Center (ISRC), Seoul National University, Seoul, 08826, Republic of Korea.

出版信息

Adv Sci (Weinh). 2025 Mar 20:e2500568. doi: 10.1002/advs.202500568.

Abstract

Neuromorphic computing emulating the human brain offers a promising alternative to the Von Neumann architecture. Developing artificial synapses is essential for implementing hardware neuromorphic systems. Indium-gallium-zinc oxide (IGZO)-based synaptic transistors using charge trapping have advantages, such as low-temperature process and complementary metal-oxide-semiconductor compatibility. However, these devices face challenges of low charge de-trapping efficiency and insufficient retention. Here, IGZO synaptic transistors are introduced utilizing an indium-tin oxide (ITO) floating gate (FG) to overcome these limitations. The ITO FG's higher conductivity and alleviated chemical interactions with the AlO tunneling layer (TL) deposited by atomic layer deposition result in enhanced electrical performance with a smooth FG/TL interface. An 8 × 8 synapse array achieves 100% yield and successful programming without interference using a half-pulse scheme. Spiking neural network simulations on MNIST and Fashion-MNIST datasets demonstrate high accuracies of 98.31% and 87.76%, respectively, despite considering device variations and retention. These findings highlight the potential of IGZO synaptic transistors for neuromorphic computing applications.

摘要

模仿人类大脑的神经形态计算为冯·诺依曼架构提供了一种很有前景的替代方案。开发人工突触对于实现硬件神经形态系统至关重要。基于铟镓锌氧化物(IGZO)利用电荷俘获的突触晶体管具有低温工艺和互补金属氧化物半导体兼容性等优点。然而,这些器件面临着电荷去俘获效率低和保持力不足的挑战。在此,引入了利用氧化铟锡(ITO)浮栅(FG)的IGZO突触晶体管来克服这些限制。ITO浮栅的较高电导率以及与通过原子层沉积沉积的AlO隧穿层(TL)的化学相互作用的减轻,导致具有光滑FG/TL界面的增强电性能。一个$8×8$突触阵列使用半脉冲方案实现了100%的成品率和无干扰的成功编程。尽管考虑了器件变化和保持力,但在MNIST和Fashion-MNIST数据集上的脉冲神经网络模拟分别展示了98.31%和87.76%的高精度。这些发现突出了IGZO突触晶体管在神经形态计算应用中的潜力。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验