Park Junhyeong, Yun Yumin, Bae Sunyeol, Jang Yuseong, Shin Seungyoon, Lee Soo-Yeon
Department of Electrical and Computer Engineering, and Inter-university Semiconductor Research Center (ISRC), Seoul National University, Seoul, 08826, Republic of Korea.
Adv Sci (Weinh). 2025 Mar 20:e2500568. doi: 10.1002/advs.202500568.
Neuromorphic computing emulating the human brain offers a promising alternative to the Von Neumann architecture. Developing artificial synapses is essential for implementing hardware neuromorphic systems. Indium-gallium-zinc oxide (IGZO)-based synaptic transistors using charge trapping have advantages, such as low-temperature process and complementary metal-oxide-semiconductor compatibility. However, these devices face challenges of low charge de-trapping efficiency and insufficient retention. Here, IGZO synaptic transistors are introduced utilizing an indium-tin oxide (ITO) floating gate (FG) to overcome these limitations. The ITO FG's higher conductivity and alleviated chemical interactions with the AlO tunneling layer (TL) deposited by atomic layer deposition result in enhanced electrical performance with a smooth FG/TL interface. An 8 × 8 synapse array achieves 100% yield and successful programming without interference using a half-pulse scheme. Spiking neural network simulations on MNIST and Fashion-MNIST datasets demonstrate high accuracies of 98.31% and 87.76%, respectively, despite considering device variations and retention. These findings highlight the potential of IGZO synaptic transistors for neuromorphic computing applications.
模仿人类大脑的神经形态计算为冯·诺依曼架构提供了一种很有前景的替代方案。开发人工突触对于实现硬件神经形态系统至关重要。基于铟镓锌氧化物(IGZO)利用电荷俘获的突触晶体管具有低温工艺和互补金属氧化物半导体兼容性等优点。然而,这些器件面临着电荷去俘获效率低和保持力不足的挑战。在此,引入了利用氧化铟锡(ITO)浮栅(FG)的IGZO突触晶体管来克服这些限制。ITO浮栅的较高电导率以及与通过原子层沉积沉积的AlO隧穿层(TL)的化学相互作用的减轻,导致具有光滑FG/TL界面的增强电性能。一个$8×8$突触阵列使用半脉冲方案实现了100%的成品率和无干扰的成功编程。尽管考虑了器件变化和保持力,但在MNIST和Fashion-MNIST数据集上的脉冲神经网络模拟分别展示了98.31%和87.76%的高精度。这些发现突出了IGZO突触晶体管在神经形态计算应用中的潜力。