Suppr超能文献

量化流动血液中的 MRI 弛豫:对 DCE-MRI 中动脉输入函数测量的影响。

Quantifying MRI relaxation in flowing blood: implications for arterial input function measurement in DCE-MRI.

机构信息

CRUK Cancer Imaging Centre, Institute of Cancer Research and Royal Marsden NHS Trust, London, UK.

出版信息

Br J Radiol. 2021 Mar 1;94(1119):20191004. doi: 10.1259/bjr.20191004. Epub 2021 Jan 28.

Abstract

OBJECTIVES

To investigate the feasibility of accurately quantifying the concentration of MRI contrast agent in flowing blood by measuring its T1 in a large vessel. Such measures are often used to obtain patient-specific arterial input functions for the accurate fitting of pharmacokinetic models to dynamic contrast enhanced MRI data. Flow is known to produce errors with this technique, but these have so far been poorly quantified and characterised in the context of pulsatile flow with a rapidly changing T1 as would be expected .

METHODS

A phantom was developed which used a mechanical pump to pass fluid at physiologically relevant rates. Measurements of T were made using high temporal resolution gradient recalled sequences suitable for DCE-MRI of both constant and pulsatile flow. These measures were used to validate a virtual phantom that was then used to simulate the expected errors in the measurement of an AIF .

RESULTS

The relationship between measured T1 values and flow velocity was found to be non-linear. The subsequent error in quantification of contrast agent concentration in a measured AIF was shown.

CONCLUSIONS

The T1 measurement of flowing blood using standard DCE- MRI sequences are subject to large measurement errors which are non-linear in relation to flow velocity.

ADVANCES IN KNOWLEDGE

This work qualitatively and quantitatively demonstrates the difficulties of accurately measuring the T1 of flowing blood using DCE-MRI over a wide range of physiologically realistic flow velocities and pulsatilities. Sources of error are identified and proposals made to reduce these.

摘要

目的

通过测量大血管中 MRI 造影剂的 T1 值来研究准确量化流动血液中造影剂浓度的可行性。这种方法常用于获得患者特定的动脉输入函数,以准确拟合药物代谢动力学模型与动态对比增强 MRI 数据。已知流动会导致该技术出现误差,但迄今为止,在 T1 快速变化的脉动流情况下,这些误差尚未得到很好的量化和描述。

方法

开发了一个使用机械泵以生理相关速率输送流体的体模。使用高时间分辨率梯度回波序列进行 T1 测量,该序列适用于恒流和脉动流的 DCE-MRI。这些测量值用于验证虚拟体模,然后使用虚拟体模模拟测量动脉输入函数时的预期误差。

结果

发现测量的 T1 值与流速之间的关系是非线性的。随后,显示了在测量的动脉输入函数中定量造影剂浓度的误差。

结论

使用标准 DCE-MRI 序列对流动血液进行 T1 测量会导致较大的测量误差,并且这些误差与流速呈非线性关系。

知识进展

这项工作定性和定量地证明了在广泛的生理现实流速和脉动范围内,使用 DCE-MRI 准确测量流动血液的 T1 值存在困难。确定了误差源,并提出了减少这些误差的建议。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8ef3/8011233/ec74fa497e4a/bjr.20191004.g001.jpg

相似文献

1
Quantifying MRI relaxation in flowing blood: implications for arterial input function measurement in DCE-MRI.
Br J Radiol. 2021 Mar 1;94(1119):20191004. doi: 10.1259/bjr.20191004. Epub 2021 Jan 28.
2
Development of a dynamic flow imaging phantom for dynamic contrast-enhanced CT.
Med Phys. 2011 Aug;38(8):4866-80. doi: 10.1118/1.3615058.
8
Phantom Validation of DCE-MRI Magnitude and Phase-Based Vascular Input Function Measurements.
Tomography. 2019 Mar;5(1):77-89. doi: 10.18383/j.tom.2019.00001.
9
Accuracy and precision of quantitative DCE-MRI parameters: How should one estimate contrast concentration?
Magn Reson Imaging. 2018 Oct;52:16-23. doi: 10.1016/j.mri.2018.05.007. Epub 2018 May 16.

本文引用的文献

1
Phantom Validation of DCE-MRI Magnitude and Phase-Based Vascular Input Function Measurements.
Tomography. 2019 Mar;5(1):77-89. doi: 10.18383/j.tom.2019.00001.
5
Vascular input function correction of inflow enhancement for improved pharmacokinetic modeling of liver DCE-MRI.
Magn Reson Med. 2018 Jun;79(6):3093-3102. doi: 10.1002/mrm.26988. Epub 2017 Nov 10.
8
Renal perfusion in acute kidney injury with DCE-MRI: deconvolution analysis versus two-compartment filtration model.
Magn Reson Imaging. 2014 Jul;32(6):781-5. doi: 10.1016/j.mri.2014.02.014. Epub 2014 Feb 13.
10
Hepatocellular carcinoma: perfusion quantification with dynamic contrast-enhanced MRI.
AJR Am J Roentgenol. 2013 Oct;201(4):795-800. doi: 10.2214/AJR.12.9798.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验