Matthews Nestor, Welch Leslie, Festa Elena K, Bruno Anthony A
Department of Psychology, Denison University, Granville, OH, United States of America.
Department of Cognitive, Linguistic & Psychological Sciences, Brown University, Providence, RI, United States of America.
PLoS One. 2021 Jan 28;16(1):e0246094. doi: 10.1371/journal.pone.0246094. eCollection 2021.
Neurophysiological experiments have shown that a shared region of the primate visual system registers both radial and rotational motion. Radial and rotational motion also share computational features. Despite these neural and computational similarities, prior experiments have disrupted radial, but not rotational, motion sensitivity -a single dissociation. Here we report stimulus manipulations that extend the single dissociation to a double dissociation, thereby showing further separability between radial and rotational motion sensitivity. In Exp 1 bilateral plaid stimuli with or without phase-noise either radiated or rotated before changing direction. College students reported whether the direction changed first on the left or right-a temporal order judgment (TOJ). Phase noise generated significantly larger disruptions to rotational TOJs than to radial TOJs, thereby completing the double dissociation. In Exp 2 we conceptually replicated this double dissociation by switching the task from TOJs to simultaneity judgments (SJs). Phase noise generated significantly larger disruptions to rotational SJs than to radial SJs. This disruption pattern reversed after changing the plaids' motion from same- to opposite-initial directions. The double dissociations reported here revealed distinct dependencies for radial and rotational motion sensitivity. Radial motion sensitivity depended strongly on information about global depth. Rotational motion sensitivity depended strongly on positional information about local luminance gradients. These distinct dependencies arose downstream from the neural mechanisms that detect local linear components within radial and rotational motion. Overall, the differential impairments generated by our psychophysical experiments demonstrate independence between radial and rotational motion sensitivity, despite their neural and computational similarities.
神经生理学实验表明,灵长类动物视觉系统的一个共享区域会记录径向运动和旋转运动。径向运动和旋转运动也具有共同的计算特征。尽管存在这些神经和计算上的相似性,但先前的实验扰乱了径向运动敏感性,而非旋转运动敏感性——这是一种单一分离现象。在此,我们报告了一些刺激操作,这些操作将单一分离扩展为双重分离,从而进一步显示了径向运动敏感性和旋转运动敏感性之间的可分离性。在实验1中,有或没有相位噪声的双侧格子图案刺激在改变方向之前要么呈放射状移动,要么旋转。大学生报告方向是先在左边还是右边改变——这是一种时间顺序判断(TOJ)。相位噪声对旋转TOJ的干扰明显大于对径向TOJ的干扰,从而完成了双重分离。在实验2中,我们通过将任务从TOJ转换为同时性判断(SJ),从概念上复制了这种双重分离。相位噪声对旋转SJ的干扰明显大于对径向SJ的干扰。在将格子图案的初始运动方向从相同改为相反之后,这种干扰模式发生了逆转。此处报告的双重分离揭示了径向运动敏感性和旋转运动敏感性的不同依赖性。径向运动敏感性强烈依赖于关于全局深度的信息。旋转运动敏感性强烈依赖于关于局部亮度梯度的位置信息。这些不同的依赖性出现在检测径向和旋转运动中局部线性成分的神经机制的下游。总体而言,我们的心理物理学实验所产生的不同损伤表明,尽管径向运动敏感性和旋转运动敏感性在神经和计算上具有相似性,但它们之间具有独立性。