Matthews Nestor, Welch Leslie, Achtman Rebecca, Fenton Rachel, FitzGerald Brynn
Department of Psychology, Denison University, Granville, Ohio, United States of America.
Cognitive, Linguistic, & Psychological Sciences, Brown University, Providence, Rhode Island, United States of America.
PLoS One. 2016 Jan 12;11(1):e0145926. doi: 10.1371/journal.pone.0145926. eCollection 2016.
A considerable body of sensory research has addressed the rules governing simultaneity judgments (SJs) and temporal order judgments (TOJs). In principle, neural events that register stimulus-arrival-time differences at an early sensory stage could set the limit on SJs and TOJs alike. Alternatively, distinct limits on SJs and TOJs could arise from task-specific neural events occurring after the stimulus-driven stage. To distinguish between these possibilities, we developed a novel reaction-time (RT) measure and tested it in a perceptual-learning procedure. The stimuli comprised dual-stream Rapid Serial Visual Presentation (RSVP) displays. Participants judged either the simultaneity or temporal order of red-letter and black-number targets presented in opposite lateral hemifield streams of black-letter distractors. Despite identical visual stimulation across-tasks, the SJ and TOJ tasks generated distinct RT patterns. SJs exhibited significantly faster RTs to synchronized targets than to subtly asynchronized targets; TOJs exhibited the opposite RT pattern. These task-specific RT patterns cannot be attributed to the early, stimulus-driven stage and instead match what one would predict if the limits on SJs and TOJs arose from task-specific decision spaces. That is, synchronized targets generate strong evidence for simultaneity, which hastens SJ RTs. By contrast, synchronized targets provide no information about temporal order, which slows TOJ RTs. Subtly asynchronizing the targets reverses this information pattern, and the corresponding RT patterns. In addition to investigating RT patterns, we also investigated training-transfer between the tasks. Training to improve SJ precision failed to improve TOJ precision, and vice versa, despite identical visual stimulation across tasks. This, too, argues against early, stimulus-driven limits on SJs and TOJs. Taken together, the present study offers novel evidence that distinct rules set the limits on SJs and TOJs.
大量的感官研究探讨了支配同时性判断(SJ)和时间顺序判断(TOJ)的规则。原则上,在早期感官阶段记录刺激到达时间差异的神经事件可能会对SJ和TOJ都设定限制。或者,SJ和TOJ的不同限制可能源于刺激驱动阶段之后发生的特定任务神经事件。为了区分这些可能性,我们开发了一种新颖的反应时间(RT)测量方法,并在感知学习过程中对其进行了测试。刺激包括双流快速序列视觉呈现(RSVP)显示。参与者判断在由黑色字母干扰物组成的相反外侧半视野流中呈现的红色字母和黑色数字目标的同时性或时间顺序。尽管跨任务的视觉刺激相同,但SJ和TOJ任务产生了不同的RT模式。与细微不同步的目标相比,SJ对同步目标的RT明显更快;TOJ表现出相反的RT模式。这些特定任务的RT模式不能归因于早期的刺激驱动阶段,而是与如果SJ和TOJ的限制源于特定任务的决策空间时人们的预测相匹配。也就是说,同步目标为同时性提供了有力证据,这加快了SJ的RT。相比之下,同步目标没有提供关于时间顺序的信息,这减慢了TOJ的RT。细微地使目标不同步会颠倒这种信息模式以及相应的RT模式。除了研究RT模式,我们还研究了任务之间的训练迁移。尽管跨任务的视觉刺激相同,但提高SJ精度的训练未能提高TOJ精度,反之亦然。这也反对对SJ和TOJ的早期刺激驱动限制。综上所述,本研究提供了新的证据,表明不同的规则对SJ和TOJ设定了限制。