Biomedical Sciences Training Program, Medical University of South Carolina, Charleston, SC, USA.
Division of Geriatrics and Gerontology, Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA.
FASEB J. 2021 Feb;35(2):e21343. doi: 10.1096/fj.202000386RR.
Most physiological processes in mammals are subjected to daily oscillations that are governed by a circadian system. The circadian rhythm orchestrates metabolic pathways in a time-dependent manner and loss of circadian timekeeping has been associated with cellular and system-wide alterations in metabolism, redox homeostasis, and inflammation. Here, we investigated the expression of clock and clock-controlled genes in multiple tissues (suprachiasmatic nucleus, spinal cord, gastrocnemius muscle, and liver) from mutant hSOD1-linked amyotrophic lateral sclerosis (ALS) mouse models. We identified tissue-specific changes in the relative expression, as well as altered daily expression patterns, of clock genes, sirtuins (Sirt1, Sirt3, and Sirt6), metabolic enzymes (Pfkfb3, Cpt1, and Nampt), and redox regulators (Nrf2, G6pd, and Pgd). In addition, astrocytes transdifferentiated from induced pluripotent stem cells from SOD1-linked and FUS RNA binding protein-linked ALS patients also displayed altered expression of clock genes. Overall, our results raise the possibility of disrupted cross-talk between the suprachiasmatic nucleus and peripheral tissues in hSOD1 mice, preventing proper peripheral clock regulation and synchronization. Since these changes were observed in symptomatic mice, it remains unclear whether this dysregulation directly drives or it is a consequence of the degenerative process. However, because metabolism and redox homeostasis are intimately entangled with circadian rhythms, our data suggest that altered expression of clock genes may contribute to metabolic and redox impairment in ALS. Since circadian dyssynchrony can be rescued, these results provide the groundwork for potential disease-modifying interventions.
哺乳动物的大多数生理过程都受到昼夜节律系统的调控,呈现出日周期波动。昼夜节律以时间依赖的方式协调代谢途径,而昼夜节律丧失与代谢、氧化还原稳态和炎症的细胞和系统范围的改变有关。在这里,我们研究了多个组织(视交叉上核、脊髓、比目鱼肌和肝脏)中时钟和时钟控制基因在突变 hSOD1 相关肌萎缩侧索硬化症 (ALS) 小鼠模型中的表达。我们确定了时钟基因、沉默调节蛋白 (Sirt1、Sirt3 和 Sirt6)、代谢酶 (Pfkfb3、Cpt1 和 Nampt) 和氧化还原调节剂 (Nrf2、G6pd 和 Pgd) 的相对表达以及昼夜表达模式的改变具有组织特异性。此外,源自 SOD1 相关和 FUS RNA 结合蛋白相关 ALS 患者的诱导多能干细胞的星形胶质细胞也表现出时钟基因表达的改变。总的来说,我们的结果提出了 hSOD1 小鼠中视交叉上核和外周组织之间的通讯中断的可能性,从而阻止了适当的外周时钟调节和同步。由于这些变化发生在有症状的小鼠中,因此尚不清楚这种失调是直接驱动还是退行性过程的结果。然而,由于代谢和氧化还原稳态与昼夜节律密切相关,我们的数据表明时钟基因表达的改变可能导致 ALS 中的代谢和氧化还原损伤。由于昼夜节律失调可以得到挽救,这些结果为潜在的疾病修饰干预提供了基础。