Suppr超能文献

追溯整个进化过程中的分子特性:一种化学生信学方法。

Tracing molecular properties throughout evolution: A chemoinformatic approach.

机构信息

Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Física, Buenos Aires, Argentina; Universidad de Buenos Aires, CONICET, Instituto de Física de Buenos Aires (IFIBA), Buenos Aires, Argentina.

Escuela de Ciencia y Tecnología, Universidad Nacional de San Martín, Martín de Irigoyen 3100, 1650 San Martín, Provincia de Buenos Aires, Argentina.

出版信息

J Theor Biol. 2021 Apr 21;515:110601. doi: 10.1016/j.jtbi.2021.110601. Epub 2021 Jan 26.

Abstract

Evolution of metabolism is a longstanding yet unresolved question, and several hypotheses were proposed to address this complex process from a Darwinian point of view. Modern statistical bioinformatic approaches targeted to the comparative analysis of genomes are being used to detect signatures of natural selection at the gene and population level, as an attempt to understand the origin of primordial metabolism and its expansion. These studies, however, are still mainly centered on genes and the proteins they encode, somehow neglecting the small organic chemicals that support life processes. In this work, we selected steroids as an ancient family of metabolites widely distributed in all eukaryotes and applied unsupervised machine learning techniques to reveal the traits that natural selection has imprinted on molecular properties throughout the evolutionary process. Our results clearly show that sterols, the primal steroids that first appeared, have more conserved properties and that, from then on, more complex compounds with increasingly diverse properties have emerged, suggesting that chemical diversification parallels the expansion of biological complexity. In a wider context, these findings highlight the worth of chemoinformatic approaches to a better understanding the evolution of metabolism.

摘要

代谢的进化是一个长期存在但尚未解决的问题,人们提出了几种假说,从达尔文的角度来解释这一复杂过程。现代统计学生物信息学方法旨在对基因组进行比较分析,用于检测基因和种群水平上自然选择的特征,试图了解原始代谢及其扩展的起源。然而,这些研究主要集中在基因及其编码的蛋白质上,在某种程度上忽略了支持生命过程的小分子有机化学物质。在这项工作中,我们选择类固醇作为一种广泛存在于所有真核生物中的古老代谢家族,并应用无监督机器学习技术来揭示自然选择在整个进化过程中对分子特性留下的特征。我们的研究结果清楚地表明,最早出现的原始类固醇甾醇具有更高的保守性,从那时起,具有越来越多样化性质的更复杂化合物出现了,这表明化学多样化与生物复杂性的扩展是平行的。从更广泛的角度来看,这些发现强调了化学信息学方法在更好地理解代谢进化方面的价值。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验