Suppr超能文献

在南极海洋地区不同隐花植物覆盖下的原位土壤温室气体通量。

In-situ soil greenhouse gas fluxes under different cryptogamic covers in maritime Antarctica.

机构信息

Centre for Functional Ecology, Department of Life Sciences, University of Coimbra, 3000-456 Coimbra, Portugal.

Centre for Functional Ecology, Department of Life Sciences, University of Coimbra, 3000-456 Coimbra, Portugal.

出版信息

Sci Total Environ. 2021 May 20;770:144557. doi: 10.1016/j.scitotenv.2020.144557. Epub 2021 Jan 17.

Abstract

Soils can influence climate by sequestering or emitting greenhouse gases (GHG) such as carbon dioxide (CO), methane (CH), and nitrous oxide (NO). We are far from understanding the direct influence of cryptogamic covers on soil GHG fluxes, particularly in areas free of potential anthropogenic confounding factors. We assessed the role of well-developed cryptogamic covers in soil attributes, as well as in the in-situ exchange of GHG between Antarctic soils and the atmosphere during the austral summer. We found lower values of soil organic matter, total organic carbon, and total nitrogen in bare areas than in soils covered by mosses and, particularly, lichens. These differences, together with concomitant decreases and increases in soil temperature and moisture, respectively, resulted in increases in in-situ CO emission (i.e. ecosystem respiration) and decreases in CH uptake but no significant changes in NO fluxes. We found consistent linear positive and negative relationships between soil attributes (i.e. soil organic matter, total organic carbon and total nitrogen) and CO emissions and CH uptake, respectively, and polynomial relationships between these soil attributes and net NO fluxes. Our results indicate that any increase in the area occupied by cryptogams in terrestrial Antarctic ecosystems (due to increased growing season and increasingly warming conditions) will likely result in parallel increases in soil fertility as well as in an enhanced capacity to emit CO and a decreased capacity to uptake CH. Such changes, unless offset by parallel C uptake processes, would represent a paradigmatic example of a positive climate change feedback. Further, we show that the fate of these terrestrial ecosystems under future climate scenarios, as well as their capacity to exchange GHG with the atmosphere might depend on the relative ability of different aboveground cryptogams to thrive under the new conditions.

摘要

土壤可以通过封存或排放温室气体(GHG)如二氧化碳(CO)、甲烷(CH)和氧化亚氮(NO)来影响气候。我们远未了解地衣和苔藓等隐花植物覆盖物对土壤 GHG 通量的直接影响,尤其是在没有潜在人为干扰因素的地区。我们评估了发达的隐花植物覆盖物在土壤属性中的作用,以及在南极土壤和大气之间的 GHG 原位交换中的作用,在南半球夏季。我们发现,裸露区域的土壤有机质、总有机碳和总氮含量均低于苔藓和地衣覆盖的土壤。这些差异,以及土壤温度和湿度的相应降低和升高,导致原位 CO 排放(即生态系统呼吸)增加,CH 吸收减少,但 NO 通量没有显著变化。我们发现土壤属性(即土壤有机质、总有机碳和总氮)与 CO 排放和 CH 吸收之间存在一致的线性正相关和负相关关系,而与净 NO 通量之间存在多项式关系。我们的结果表明,陆地南极生态系统中隐花植物覆盖面积的任何增加(由于生长季节的延长和气候的逐渐变暖)都可能导致土壤肥力的同步增加,以及 CO 排放能力的增强和 CH 吸收能力的降低。除非有平行的 C 吸收过程来抵消这些变化,否则这将代表气候变化正反馈的一个典型例子。此外,我们表明,这些陆地生态系统在未来气候情景下的命运,以及它们与大气交换 GHG 的能力,可能取决于不同地上隐花植物在新条件下茁壮成长的相对能力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验