Suppr超能文献

融合碰撞数据和替代安全措施进行安全评估:具有条件自回归空间效应和随机参数的结构方程模型的开发。

Fusing crash data and surrogate safety measures for safety assessment: Development of a structural equation model with conditional autoregressive spatial effect and random parameters.

机构信息

Department of Civil and Urban Engineering, New York University, 15 MetroTech Center 6(th)Floor, Brooklyn, NY, 11201, USA.

Department of Civil & Environmental Engineering, Old Dominion University (ODU), 129C Kaufman Hall, Norfolk, VA, 23529, USA.

出版信息

Accid Anal Prev. 2021 Mar;152:105971. doi: 10.1016/j.aap.2021.105971. Epub 2021 Jan 25.

Abstract

Most existing efforts to assess safety performance require sufficient crash data, which generally takes a few years to collect and suffers from certain limitations (such as long data collection time, under-reporting issue and so on). Alternatively, the surrogate safety measure (SSMs) based approach that can assess traffic safety by capturing the more frequent "near-crash" situations have been developed, but it is criticized for the potential sampling and measurement errors. This study proposes a new safety performance measure-Risk Status (RS), by fusing crash data and SSMs. Real-world connected vehicle data collected in the Safety Pilot Model Deployment (SPMD) project in Ann Arbor, Michigan is used to extract SSMs. With RS treated as a latent variable, a structural equation model with conditional autoregressive spatial effect and corridor-level random parameters is developed to model the interrelationship among RS, crash frequency, risk identified by SSMs, and contributing factors. The modeling results confirm the proposed interrelationship and the necessity to account for both spatial autocorrelation and unobserved heterogeneity. RS can integrate both crash frequency and SSMs together while controlling for observed and unobserved factors. RS is found to be a more reliable criterion for safety assessment in an implementation case of hotspot identification.

摘要

大多数现有的安全性能评估方法都需要足够的事故数据,这些数据通常需要几年的时间才能收集,并且存在一定的局限性(例如,数据收集时间长、漏报问题等)。另一种方法是基于替代安全度量(SSM)的方法,通过捕获更频繁的“近事故”情况来评估交通安全,但它因潜在的抽样和测量误差而受到批评。本研究通过融合事故数据和 SSMs 提出了一种新的安全性能度量方法——风险状态(RS)。密歇根州安阿伯市安全试点模型部署(SPMD)项目中收集的真实世界的联网车辆数据被用来提取 SSMs。将 RS 视为潜在变量,开发了一个具有条件自回归空间效应和走廊级随机参数的结构方程模型,以建模 RS、事故频率、SSM 识别的风险以及影响因素之间的相互关系。建模结果证实了所提出的相互关系以及考虑空间自相关和未观测异质性的必要性。RS 可以在控制观测和未观测因素的同时,将事故频率和 SSMs 整合在一起。在热点识别的实施案例中,RS 被发现是一种更可靠的安全评估标准。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验