Suppr超能文献

冻结的算法:大脑的布线如何促进学习。

Frozen algorithms: how the brain's wiring facilitates learning.

机构信息

Department of Engineering, University of Cambridge, United Kingdom.

Department of Engineering, University of Cambridge, United Kingdom.

出版信息

Curr Opin Neurobiol. 2021 Apr;67:207-214. doi: 10.1016/j.conb.2020.12.017. Epub 2021 Jan 25.

Abstract

Synapses and neural connectivity are plastic and shaped by experience. But to what extent does connectivity itself influence the ability of a neural circuit to learn? Insights from optimization theory and AI shed light on how learning can be implemented in neural circuits. Though abstract in their nature, learning algorithms provide a principled set of hypotheses on the necessary ingredients for learning in neural circuits. These include the kinds of signals and circuit motifs that enable learning from experience, as well as an appreciation of the constraints that make learning challenging in a biological setting. Remarkably, some simple connectivity patterns can boost the efficiency of relatively crude learning rules, showing how the brain can use anatomy to compensate for the biological constraints of known synaptic plasticity mechanisms. Modern connectomics provides rich data for exploring this principle, and may reveal how brain connectivity is constrained by the requirement to learn efficiently.

摘要

突触和神经连接具有可塑性,可以根据经验进行塑造。但是,连接本身在多大程度上影响神经回路的学习能力?优化理论和人工智能的见解揭示了学习如何在神经回路中实现。虽然它们在本质上是抽象的,但学习算法为神经回路学习所需的必要成分提供了一套有原则的假设。这些包括使从经验中学习成为可能的信号和电路模式,以及对使学习在生物环境中具有挑战性的约束的理解。值得注意的是,一些简单的连接模式可以提高相对粗糙的学习规则的效率,展示了大脑如何利用解剖结构来补偿已知突触可塑性机制的生物限制。现代连接组学为探索这一原则提供了丰富的数据,并可能揭示大脑连接性如何受到高效学习的要求的限制。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/923a/8202511/e14b119d140e/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验