Grupo de Neurodegeneración y Neurorreparación (GRUNEDERE), Área de Fisiología, Facultad de Medicina, Universidad de Cádiz, Cádiz, Spain.
Instituto de Investigación e Innovación Biomédica de Cádiz (INiBICA), Cádiz, Spain.
Neuropathol Appl Neurobiol. 2021 Dec;47(7):1004-1018. doi: 10.1111/nan.12699. Epub 2021 Feb 10.
Alterations in excitability represent an early hallmark in Amyotrophic Lateral Sclerosis (ALS). Therefore, deciphering the factors that impact motor neuron (MN) excitability offers an opportunity to uncover further aetiopathogenic mechanisms, neuroprotective agents, therapeutic targets, and/or biomarkers in ALS. Here, we hypothesised that the lipokine lysophosphatidic acid (lpa) regulates MN excitability via the G-protein-coupled receptor lpa . Then, modulating lpa -mediated signalling might affect disease progression in the ALS SOD1-G93A mouse model.
The influence of lpa-lpa signalling on the electrical properties, Ca dynamic and survival of MNs was tested in vitro. Expression of lpa in cultured MNs and in the spinal cord of SOD1-G93A mice was analysed. ALS mice were chronically treated with a small-interfering RNA against lpa (siRNA ) or with the lpa inhibitor AM095. Motor skills, MN loss, and lifespan were evaluated.
AM095 reduced MN excitability. Conversely, exogenous lpa increased MN excitability by modulating task1 'leak' potassium channels downstream of lpa . Lpa-lpa signalling evoked an excitotoxic response in MNs via voltage-sensitive calcium channels. Cultured SOD1-G93A MNs displayed lpa upregulation and heightened vulnerability to lpa. In transgenic mice, lpa was upregulated mostly in spinal cord MNs before cell loss. Chronic administration of either siRNA or AM095 reduced lpa expression at least in MNs, delayed MN death, improved motor skills, and prolonged life expectancy of ALS mice.
These results suggest that stressed lpa-lpa signalling contributes to MN degeneration in SOD1-G93A mice. Consequently, disrupting lpa slows down disease progression. This highlights LPA signalling as a potential target and/or biomarker in ALS.
兴奋性改变是肌萎缩侧索硬化症(ALS)的早期标志。因此,破译影响运动神经元(MN)兴奋性的因素为揭示ALS 的进一步发病机制、神经保护剂、治疗靶点和/或生物标志物提供了机会。在这里,我们假设脂质代谢产物溶血磷脂酸(lpa)通过 G 蛋白偶联受体 lpa 调节 MN 兴奋性。然后,调节 lpa 介导的信号可能会影响 SOD1-G93A 肌萎缩侧索硬化症小鼠模型中的疾病进展。
在体外测试 lpa-lpa 信号对 MN 的电特性、Ca 动态和存活的影响。分析培养的 MN 和 SOD1-G93A 小鼠脊髓中的 lpa 表达。用针对 lpa 的小干扰 RNA(siRNA)或 lpa 抑制剂 AM095 对 ALS 小鼠进行慢性治疗。评估运动技能、MN 损失和寿命。
AM095 降低 MN 兴奋性。相反,外源性 lpa 通过调节 lpa 下游的任务 1“泄漏”钾通道来增加 MN 兴奋性。lpa-lpa 信号通过电压敏感钙通道在 MN 中引发兴奋毒性反应。培养的 SOD1-G93A MN 显示 lpa 上调,并对 lpa 表现出更高的脆弱性。在转基因小鼠中,lpa 在细胞丢失前主要在上运动神经元中上调。siRNA 或 AM095 的慢性给药至少在 MN 中降低 lpa 表达,延迟 MN 死亡,改善运动技能并延长 ALS 小鼠的预期寿命。
这些结果表明,应激 lpa-lpa 信号有助于 SOD1-G93A 小鼠的 MN 变性。因此,破坏 lpa 会减缓疾病进展。这凸显了 LPA 信号作为 ALS 的潜在靶点和/或生物标志物。